Journal of Chemical Ecology

, Volume 41, Issue 4, pp 373–385 | Cite as

Alkaloid Venom Weaponry of Three Megalomyrmex Thief Ants and the Behavioral Response of Cyphomyrmex costatus Host Ants

  • Rachelle M. M. Adams
  • Tappey H. Jones
  • John T. Longino
  • Robert G. Weatherford
  • Ulrich G. Mueller
Article

Abstract

Social parasites exploit other societies by invading and stealing resources. Some enter protected nests using offensive chemical weaponry made from alkaloid-based venom. We characterized the venoms of three Megalomyrmex thief ant species (M. mondabora, M. mondaboroides, and M. silvestrii) that parasitize the fungus-growing ants, and developed an ethogram to describe host ant reactions to raiding M. mondaboroides and M. silvestrii parasites. We compared piperidine, pyrrolidine, and pyrolizidine venom alkaloid structures with synthetic samples from previous studies, and describe the novel stereochemistry of trans 2-hexyl-5-[8-oxononyl]-pyrrolidine (3) from M. mondabora. We showed that workers of Cyphomyrmex costatus, the host of M. mondaboroides and M. silvestrii, react to a sting by Megalomyrmex parasites mainly with submissive behavior, playing dead or retreating. Host submission also followed brief antennal contact. The behavior of C. costatus ants observed in this study was similar to that of Cyphomyrmex cornutus, host of M. mondabora, suggesting that the alkaloidal venoms with pyrrolidines from M. mondabora, piperidines from M. mondaboroides, and pyrolizidines from M. silvestrii may function similarly as appeasement and repellent allomones against host ants, despite their different chemical structure. With the use of these chemical weapons, the Megalomyrmex thief ants are met with little host resistance and easily exploit host colony resources.

Keywords

Parasitism Solenopsidini Attini Chemical defense Semiochemical Coevolution Appeasement substance Tolerance behavior 

Supplementary material

10886_2015_565_MOESM1_ESM.docx (18 kb)
ESM 1(DOCX 17 kb)

References

  1. Adams ES, Traniello JFA (1981) Chemical interference competition by Monomorium minimum (Hymenoptera: formicidae). Oecologia 51:265–270. doi:10.1007/BF00540612 CrossRefGoogle Scholar
  2. Adams RMM, Liberti J, Illum AA, Jones TH, Nash DR, Boomsma JJ (2013) Chemically armed mercenary ants protect fungus-farming societies. Proc Natl Acad Sci U S A 110:15752–15757. doi:10.1073/pnas.1311654110 CrossRefPubMedCentralPubMedGoogle Scholar
  3. Adams RMM, Longino JT (2007) Nesting biology of the arboreal fungus-growing ant Cyphomyrmex cornutus and behavioral interactions with the social-parasitic ant Megalomyrmex mondabora. Insects Soc 54:136–143. doi:10.1007/s00040-007-0922-0 CrossRefGoogle Scholar
  4. Adams RMM, Mueller UG, Holloway AK, Green AM (2000a) Garden sharing and garden stealing in fungus-growing ants. Naturwissenschaften 87:491–493CrossRefPubMedGoogle Scholar
  5. Adams RMM, Mueller UG, Schultz TR, Norden B (2000b) Agro-predation: usurpation of attine fungus gardens by Megalomyrmex ants. Naturwissenschaften 87:549–554CrossRefPubMedGoogle Scholar
  6. Adams RMM, Shah K, Antonov LD, Mueller UG (2012) Fitness consequences of nest infiltration by the mutualist-exploiter Megalomyrmex adamsae. Ecol Entomol 37:453–462. doi:10.1111/j.1365-2311.2012.01384.x CrossRefGoogle Scholar
  7. Akino T (2008) Chemical strategies to deal with ants: a review of mimicry, camouflage, propaganda, and phytomimesis by ants (Hymenoptera: formicidae) and other arthropods. Myrmecol News 11:173–181Google Scholar
  8. Allies AB, Bourke AFG, Franks NR (1986) Propaganda substances in the cuckoo ant Leptothorax kutteri and the slave-maker Harpagoxenus sublaevis. J Chem Ecol 12:1285–1293CrossRefPubMedGoogle Scholar
  9. Anderson AN, Blum MS, Jones TH (1991) Venom alkaloids in Monomoriumrothsteini” Forel repel other ants: is this the secret to success by Monomorium in Australian ant communities? Oecologia 88:157–160CrossRefGoogle Scholar
  10. Barke J, Seipke RF, Gruschow S, Heavens D, Drou N, Bibb MJ, Goss RJ, Yu DW, Hutchings MI (2010) A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus. BMC Biol 8:109. doi:10.1186/1741-7007-8-109 CrossRefPubMedCentralPubMedGoogle Scholar
  11. Blum MS, Jones TH, Hölldobler B, Fales HM, Jaouni T (1980) Alkaloidal venom mace: offensive use by a thief ant. Naturwissenschaften 67:144–145CrossRefGoogle Scholar
  12. Boudinot BE, Sumnicht TP, Adams RMM (2013) Central American ants of the genus Megalomyrmex Forel (Hymenoptera: Formicidae): six new species and keys to workers and males. Zootaxa 3732:1–82CrossRefPubMedGoogle Scholar
  13. Carlin NF, Hölldobler B (1987) The kin recognition system of carpenter ants (Camponotus spp.). Behav Ecol Sociobiol 20:209–217. doi:10.1007/BF00299735 CrossRefGoogle Scholar
  14. Crewe RM, Blum MS (1972) Alarm pheromones of the Attini: their phylogenetic significance. J Insect Physiol 18:31–42. doi:10.1016/0022-1910(72)90062-5 CrossRefGoogle Scholar
  15. Currie C, Scott J, Summerbell R, Malloch D (1999) Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 398:701–705CrossRefGoogle Scholar
  16. D’Ettorre P, Errard C, Ibarra F, Francke W, Hefetz A (2000) Sneak in or repel your enemy: Dufour’s gland repellent as a strategy for successful usurpation in the slave-maker Polyergus rufescens. Chemoecology 10:135–142. doi:10.1007/PL00001815 CrossRefGoogle Scholar
  17. Daly J (1995) The chemistry of poisons in amphibian skin. Proc Natl Acad Sci U S A 92:9–13CrossRefPubMedCentralPubMedGoogle Scholar
  18. De Souza DJ, Soares IMF, Della Lucia TMC (2007) Acromyrmex ameliae sp. n. (Hymenoptera: formicidae): a new social parasite of leaf-cutting ants in Brazil. Insect Sci 14:251–257. doi:10.1111/j.1744-7917.2007.00151.x CrossRefGoogle Scholar
  19. Dijkstra MB, Boomsma JJ (2003) Gnamptogenys hartmani wheeler (Ponerinae: ectatommini): an agro-predator of Trachymyrmex and Sericomyrmex fungus-growing ants. Naturwissenschaften 90:568–571. doi:10.1007/s00114-003-0478-4 CrossRefPubMedGoogle Scholar
  20. Escoubas P, Blum MS (1990) The biological activities of ant-derived alkaloids. In: Vander Meer RK, Jaffe K, Cedeno A (eds) Applied myrmecology. Westview Press, Boulder, Colorado, pp 482–489Google Scholar
  21. Francke W, Schröder F, Walter F, Sinnwell V, Baumann H, Kaib M (1995) New alkaloids from ants: identification and synthesis of (3R,5S,9R)-3-butyl-5-(1-oxopropy1)indolizidine and (3R,5R,9R)-3-butyl-5-(1-oxopropyl)indolizidine, constituents of the poison gland secretion in Myrmicaria. Liebigs Ann 6:965–977CrossRefGoogle Scholar
  22. Garraffo HM, Simon L, Daly J, Spande TF, Jones TH (1994) Cis- and trans-configurations of α, α’-disubstituted piperidines and pyrrolidines by GC-FTIR; application to decahydroquinoline stereochemistry. Tetrahedron 50:11329–11338CrossRefGoogle Scholar
  23. Gorman J, Jones T, Spande T, Snelling R, Torres J, Garraffo H (1998) 3-hexyl-5-methylindolizidine isomers from thief ants, Solenopsis (Diplorhoptrum) species. J Chem Ecol 24:933–943CrossRefGoogle Scholar
  24. Guillem R, Drijfhout F, Martin S (2014) Chemical deception among ant social parasites. Curr Zool 60:62–75Google Scholar
  25. Hermann H, Moser J, Hunt A (1970) The hymenopterous poison apparatus. X. Morphological and behavioral changes in Atta texana (Hymenoptera: Formicidae). Ann Entomol Soc Am 63:1552–1558CrossRefGoogle Scholar
  26. Hölldobler B (1973) Chemische strategie beim nahrungserwerb der diebsameise (Solenopsis fugax Latr.) und der Pharaoameise (Monomorium pharaonis L.). Oecologia 11:371–380CrossRefGoogle Scholar
  27. Hölldobler B, Wilson E (1990) The ants. Belknap Press of Harvard University Press, Cambridge, p 198CrossRefGoogle Scholar
  28. Ishak HD, Miller JL, Sen R, Dowd SE, Meyer E, Mueller UG (2011) Microbiomes of ant castes implicate new microbial roles in the fungus-growing ant Trachymyrmex septentrionalis. Sci Rep 1:204. doi:10.1038/srep00204 CrossRefPubMedCentralPubMedGoogle Scholar
  29. Jones T, Blum M, Howard R (1982a) Venom chemistry of ants in the genus Monomorium. J Chem Ecol 8:285–300CrossRefPubMedGoogle Scholar
  30. Jones T, Highet R, Blum M, Fales H (1984) (5Z, 9Z)-3-alkyl-5-methylindolizidines from Solenopsis (Diplorhoptrum) species. J Chem Ecol 10:1233–1249CrossRefPubMedGoogle Scholar
  31. Jones TH, Blum MS, Fales HM (1982b) Ant venom alkaloids from Solenopsis and Monomorium species recent developments. Tetrahedron 38:1949–1958CrossRefGoogle Scholar
  32. Jones TH, Blum MS, Fales HM, Brandão CRF, Lattke J (1991a) Chemistry of venom alkaloids in the ant genus Megalomyrmex. J Chem Ecol 17:1897–1908. doi:10.1007/BF00993736 CrossRefPubMedGoogle Scholar
  33. Jones TH, DeVries PJ, Escoubas P (1991b) Chemistry of venom alkaloids in the ant Megalomyrmex foreli (Myrmicinae) from Costa Rica. J Chem Ecol 17:2507–2518CrossRefPubMedGoogle Scholar
  34. Jones TH, Torres J, Spande T, Garraffo H, Blum M, Snelling R (1996) Chemistry of venom alkaloids in some Solenopsis (Diplorhoptrum) species from Puerto Rico. J Chem Ecol 22:1221–1236CrossRefPubMedGoogle Scholar
  35. Jones TH, Wojciechowski T, Snelling R, Torres J, Chacón P, DeVreis P (1999) Dialkylpyrrolidines from the ants Megalomyrmex cyendyra Brandão and M. latreillei Emery. Caribb J Sci 35:310–311Google Scholar
  36. Jouvenaz DP, Blum MS, MacConnell JG (1972) Antibacterial activity of venom alkaloids from the imported fire ant, Solenopsis invicta Buren. Antimicrob Agents Chemother 2:291–293CrossRefPubMedCentralPubMedGoogle Scholar
  37. Kang S, Kim W, Moon B (1985) An effective method for the preparation of ω-bromoalkanols from α, ω-diols. Synthesis 12:1161–1162CrossRefGoogle Scholar
  38. Leclercq S, Braekman JC, Daloze D, Pasteels JM, Van der Meer RK (1996) Biosynthesis of the Solenopsins, venom alkaloids of the fire ants. Naturwissenschaften 83:222–225CrossRefGoogle Scholar
  39. Lenoir A, d’Ettorre P, Errard C, Hefetz A (2001) Chemical ecology and social parasitism in ants. Annu Rev Entomol 46:573–599CrossRefPubMedGoogle Scholar
  40. Li S, Jin X, Chen J (2012) Effects of piperidine and piperideine alkaloids from the venom of red imported fire ants, Solenopsis invicta Buren, on Pythium ultimum Trow growth in vitro and the application of piperideine alkaloids to control cucumber damping-off in the greenhouse. Pest Manag Sci 68:1546–1552. doi:10.1002/ps.3337 CrossRefPubMedGoogle Scholar
  41. Longino JT (2010) A taxonomic review of the ant genus Megalomyrmex Forel (Hymenoptera: Formicidae) in Central America. Zootaxa 2720:35–58Google Scholar
  42. Martin SJ, Drijfhout FP (2009) Nestmate and task cues are influenced and encoded differently within ant cuticular hydrocarbon profiles. J Chem Ecol 35:368–374. doi:10.1007/s10886-009-9612-x CrossRefPubMedGoogle Scholar
  43. Morgan ED (2004) Biosynthesis in insects. R Soc Chem Cambridge. doi:10.1039/9781847550262 Google Scholar
  44. Mori A, Visicchio R, Sledge M (2000) Behavioural assays testing the appeasement allomone of Polyergus rufescens queens during host-colony usurpation. Ethol Ecol Evol 12:315–322CrossRefGoogle Scholar
  45. Mueller UG (2012) Symbiont recruitment versus ant-symbiont co-evolution in the attine ant-microbe symbiosis. Curr Opin Microbiol 15:269–277. doi:10.1016/j.mib.2012.03.001 CrossRefPubMedGoogle Scholar
  46. Mueller UG, Rehner SA, Schultz TR (1998) The evolution of agriculture in ants. Science 281:2034–2038CrossRefPubMedGoogle Scholar
  47. Obin MS, Vander Meer RK (1985) Gaster flagging by fire ants (Solenopsis spp.): functional significance of venom dispersal behavior. J Chem Ecol 11:1757–1768CrossRefPubMedGoogle Scholar
  48. Rabeling C, Cover SP, Johnson RA, Mueller UG (2007) A review of the North American species of the fungus-gardening ant genus Trachymyrmex (Hymenoptera: formicidae). Zootaxa 1664:1–53Google Scholar
  49. Rashid T, Chen J, McLeod P (2013) Toxicity of newly isolated piperideine alkaloids from the red imported fire ant, Solenopsis invicta Buren, against the green peach aphid, Myzus persicae (Sulzer). Adv Entomol 01:20–23. doi:10.4236/ae.2013.12005 CrossRefGoogle Scholar
  50. Regnier FE, Wilson EO (1971) Chemical communication and “propaganda” in slave-maker ants. Science 172:267–269CrossRefPubMedGoogle Scholar
  51. Ruano F, Devers S, Sanllorente O, Errard C, Tinaut A, Lenoir A (2011) A geographical mosaic of coevolution in a slave-making host-parasite system. J Evol Biol 24:1071–1079. doi:10.1111/j.1420-9101.2011.02238.x CrossRefPubMedGoogle Scholar
  52. Saporito RA, Garraffo HM, Donnelly MA, Edwards AL, Longino JT, Daly JW (2004) Formicine ants: an arthropod source for the pumiliotoxin alkaloids of dendrobatid poison frogs. Proc Natl Acad Sci U S A 101:8045–8050. doi:10.1073/pnas.0402365101 CrossRefPubMedCentralPubMedGoogle Scholar
  53. Schoenian I, Spiteller M, Ghaste M, Wirth R, Herz H, Spiteller D (2011) Chemical basis of the synergism and antagonism in microbial communities in the nests of leaf-cutting ants. Proc Natl Acad Sci U S A 108:1955–1960. doi:10.1073/pnas.1008441108 CrossRefPubMedCentralPubMedGoogle Scholar
  54. Schultz TR, Brady SG (2008) Major evolutionary transitions in ant agriculture. Proc Natl Acad Sci USA 105:5435–5440Google Scholar
  55. Schultz TR, Bekkevold D, Boomsma JJ (1998) Acromyrmex insinuator new species: an incipient social parasite of fungus-growing ants. Insects Soc 45:457–471. doi:10.1007/s000400050101 CrossRefGoogle Scholar
  56. Seipke RF, Barke J, Brearley C, Hill L, Yu DW, Goss RJM, Hutchings MI (2011) A single Streptomyces symbiont makes multiple antifungals to support the fungus farming ant Acromyrmex octospinosus. PLoS ONE 6:e22028. doi:10.1371/journal.pone.0022028 CrossRefPubMedCentralPubMedGoogle Scholar
  57. Shik JZ, Kaspari M (2010) More food, less habitat: how necromass and leaf litter decomposition combine to regulate a litter ant community. Ecol Entomol 35:158–165. doi:10.1111/j.1365-2311.2009.01165.x CrossRefGoogle Scholar
  58. Snyder AJ, Jones TH, Snelling GC, Snelling RR (2009) Venom alkaloids from some Monomorium species. J Hymenopt Res 18:145–150Google Scholar
  59. Soler J, Martínez J, Soler M, Møller A (2001) Life history of magpie populations sympatric or allopatric with the brood parasitic great spotted cuckoo. Ecology 82:1621–1631CrossRefGoogle Scholar
  60. Svensson EI, Råberg L (2010) Resistance and tolerance in animal enemy-victim coevolution. Trends Ecol Evol 25:267–274. doi:10.1016/j.tree.2009.12.005 CrossRefPubMedGoogle Scholar
  61. Termonia A, Pasteels JM, Windsor DM, Milinkovitch MC (2002) Dual chemical sequestration: a key mechanism in transitions among ecological specialization. Proc R Soc B Biol Sci 269:1–6. doi:10.1098/rspb.2001.1859 CrossRefGoogle Scholar
  62. Vander Meer RK (2012) Ant interactions with soil organisms and associated semiochemicals. J Chem Ecol 38:728–745. doi:10.1007/s10886-012-0140-8 CrossRefPubMedGoogle Scholar
  63. Ward PS, Brady SG, Fisher BL, Schultz TR (2015) The evolution of myrmicine ants: phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera: formicidae). Syst Entomol 40:61–81. doi:10.1111/syen.12090 CrossRefGoogle Scholar
  64. Wheeler WM (1907) The fungus-growing ants of North America. Bull Am Mus Nat Hist 23:669–807Google Scholar
  65. Zamora-Munoz C, Ruano F, Errard C, Lenoir A, Hefetz A, Tinaut A (2003) Coevolution in the slave-parasite system Proformica longiseta-Rossomyrmex minuchae (Hymenoptera: formicidae). Sociobiology 42:299–317Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Centre for Social Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
  2. 2.Department of Entomology, National Museum of Natural HistorySmithsonian InstitutionWashingtonUSA
  3. 3.Department of ChemistryVirginia Military InstituteLexingtonUSA
  4. 4.Department of BiologyUniversity of UtahSalt Lake CityUSA
  5. 5.Section of Integrative BiologyUniversity of Texas at AustinAustinUSA

Personalised recommendations