Journal of Chemical Ecology

, Volume 41, Issue 3, pp 294–302 | Cite as

A Biologically Active Analog of the Sex Pheromone of the Emerald Ash Borer, Agrilus planipennis

  • P. J. SilkEmail author
  • K. Ryall
  • P. Mayo
  • D. I. MaGee
  • G. Leclair
  • J. Fidgen
  • R. Lavallee
  • J. Price
  • J. McConaghy


The emerald ash borer, Agrilus planipennis (Coleoptera: Buprestidae) (EAB), is an invasive species causing unprecedented levels of mortality to ash trees in its introduced range. The female-produced sex pheromone of EAB has been shown to contain the macrocyclic lactone (3Z)-dodecen-12-olide. This compound and its geometrical isomer, (3E)-dodecen-12-olide, have been demonstrated previously to be EAG active and, in combination with a host-derived green leaf volatile, (3Z)-hexenol, to be attractive to male EAB in green prism traps deployed in the ash tree canopy. In the current study, we show that the saturated analog, dodecan-12-olide, is similarly active, eliciting an antennal response and significant attraction of EAB in both olfactometer and trapping bioassays in green traps with (3Z)-hexenol. Conformational modeling of the three lactones reveals that their energies and shapes are very similar, suggesting they might share a common receptor in EAB antennae. These findings provide new insight into the pheromone ecology of this species, highlighting the apparent plasticity in response of adults to the pheromone and its analog. Both of the unsaturated isomers are costly to synthesize, involving multistep, low-yielding processes. The saturated analog can be made cheaply, in high yield, and on large scale via Mitsunobu esterification of a saturated ω-hydroxy acid or more simply by Baeyer-Villiger oxidation of commercially available cyclododecanone. The analog can thus provide an inexpensive option as a lure for detection surveys as well as for possible mitigation purposes, such as mating disruption.


Dodecan-12-olide (3Z)-dodecen-12-olide Lactone pheromone Agrilus planipennis Analog Buprestidae Invasive insect 



We thank Matt Brophy, Isabelle Ochoa, Sarah Crispell, and David Nisbet for technical help. We also thank the cities of Sault Ste. Marie and Milton, Ontario, and Montreal, Quebec. Specifically, we thank Anthony Daniel of the City of Montreal. We thank Jon Sweeney for a helpful review of an earlier draft of the manuscript. We thank Prof. Ghislain Deslongchamps (UNB) for his advice on the molecular modeling. This project was funded by Natural Resources Canada, Canadian Forest Service and SERG-I (FPL, OMNR). All experiments reported here comply with the laws of Canada.

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. Bartelt R, Cossé AA, Zilkowski BW, Fraser I (2007) Antennally active macrolide from the emerald ash borer Agrilus planipennis emitted predominantly by females. J Chem Ecol 33:1299–1302CrossRefPubMedGoogle Scholar
  2. Boden CD, Chambers J, Stevens IDR (1993) A concise, efficient and flexible strategy for the synthesis of the pheromones of Oryzaephilus and Cryptolestes grain beetles. Synthesis 4:411–420CrossRefGoogle Scholar
  3. Cappaert D, Mccullough DG, Poland TM, Siegert NW (2005) Emerald ash borer in North America: a research and regulatory challenge. Am Entomol 51:152–165CrossRefGoogle Scholar
  4. Cook SM, Khan ZR, Pickett JA (2007) The use of push–pull strategies in integrated pest management. Annu Rev Entomol 52:375–400CrossRefPubMedGoogle Scholar
  5. Crook DJ, Mastro VC (2010) Chemical ecology of emerald ash borer Agrilus planipennis. J Chem Ecol 36:101–112CrossRefPubMedGoogle Scholar
  6. Crook DJ, Krimian A, Francese J, Fraser I, Poland TM, Sawyer AJ, Mastro V (2008) Development of a host-based semiochemical lure for trapping emerald ash borer Agrilus planipennis (Coleoptera: Buprestidae). Environ Entomol 37:356–365CrossRefPubMedGoogle Scholar
  7. De Groot P, Grant GG, Poland TM, Scharbach R, Buchan L, Nott RW, MacDonald L, Pitt D (2008) Electrophysiological response and attraction of emerald ash borer to green leaf volatiles (GLVs) emitted by host foliage. J Chem Ecol 34:1170–1179CrossRefPubMedGoogle Scholar
  8. Dickens JC, Jang EB, Light DM, Alford AR (1990) Enhancement of insect pheromone responses by green leaf volatiles. Naturwissenschaften 77:29–31CrossRefGoogle Scholar
  9. Domingue MJ, Baker TC (2012) A multi-disciplinary approach for developing tools to monitor invasive buprestid beetle species. In: Blanco JJ, Fernandes AT (eds) Invasive species: threats, ecological impact and control methods. Nova, Hauppauge, pp 77–100Google Scholar
  10. EAB (2014) Emerald ash borer information website. Accessed May 2014
  11. Fãrcasiu D, Jähme J, Rüchardt C (1985) Relative reactivity at bridgehead adamantyl and homoadamantyl substrates from solvolysis with heptafluorobutyrate as a highly reactive carbohydrate leaving group. Absence of SN2 character of solvolysis of tert-butyl derivatives. J Am Chem Soc 107:5717–5722CrossRefGoogle Scholar
  12. Francese JA, Mastro VC, Oliver JB, Lance DR, Youseff N, Lavalee SG (2005) Evaluation of colors for trapping Agrilus planipennis (Coleoptera: Buprestidae). J Entomol Sci 40:93–95Google Scholar
  13. Francese JA, Crook DJ, Fraser I, Lance DA, Sawyer AJ, Mastro VC (2010) Optimization of trap color for the emerald ash borer, Agrilus planipennis (Coleoptera: Buprestidae). J Econ Entomol 103:1235–1241CrossRefPubMedGoogle Scholar
  14. Grant GG, Ryall KL, Lyons DB, Abou-Zaid MM (2010) Differential response of male and female emerald ash borers (Col., Buprestidae) to (Z)-3-hexenol and manuka oil. J Appl Entomol 34:26–33CrossRefGoogle Scholar
  15. Haack RA, Jendek E, Lui H, Marchant KR, Petrice T, Poland TM, Ye H (2002) The emerald ash borer: a new exotic pest in North America. Newsl Mich Entomol Soc 47:1–5Google Scholar
  16. Lelito JP, Fraser I, Mastro V, Tumlinson JH, BöröczkY K, Baker TC (2007) Visually mediated ‘paratrooper copulations’ in the mating behaviour of Agrilus planipennis (Coleoptera: Buprestidae), a highly destructive invasive pest of North American ash trees. J Insect Behav 20:537–552CrossRefGoogle Scholar
  17. Lelito JP, Fraser I, Mastro V, Tumlinson JH, Baker TC (2008) Novel visual-cue-based sticky traps for monitoring of emerald ash borers, Agrilus planipennis (Col., Buprestidae). J Appl Entomol 132:668–674CrossRefGoogle Scholar
  18. Lelito JP, BöröczkY K, Jones TH, Fraser I, Mastro VC, Tumlinson JH, Baker TC (2009) Behavioral evidence for a contact sex pheromone component of the emerald ash borer, Agrilus planipennis Fairmaire. J Chem Ecol 35:104–110CrossRefPubMedGoogle Scholar
  19. Lemmen J, Evenden M (2009) Peripheral and behavioral plasticity of pheromone response and its hormonal control in a long-lived moth. J Exp Biol 212:2000–2006CrossRefPubMedGoogle Scholar
  20. Magee DI, Mayo PD, Silk PJ, Beattie B (2013) Synthesis of (3E)-dodecen-12-olide, a potential pheromone component of the emerald ash borer. Synth Commun 43:1368–1377CrossRefGoogle Scholar
  21. Mayo PD, Silk PJ, Magee DI, McConaghy J (2014) Concise synthesis of (3Z)-dodecen-12-olide, pheromone component of the emerald ash borer. Synth Commun 44:1957–1969CrossRefGoogle Scholar
  22. McCullough DG, Mercader RJ (2012) Evaluation of potential strategies to slow ash mortality (SLAM) caused by emerald ash borer (Agrilus planipennis): SLAM in an urban forest. Int J Pest Manag 58:9–23CrossRefGoogle Scholar
  23. Mino T, Masuda S, Nishio M, Yamashita M (1997) Synthesis of lactones by Baeyer-Villiger oxidation with magnesium monoperphthalate hexahydrate. J Org Chem 62:2633–2635CrossRefPubMedGoogle Scholar
  24. Nehme M, Keena M, Zhang A, Baker T, Xu Z, Hoover K (2010) Field testing of Anoplophora glabripennis male-produced pheromone and plant volatiles. Environ Entomol 39:169–176CrossRefPubMedGoogle Scholar
  25. Pajares JA, Álvarez G, Ibea F, Gallego D, Hall DR, Farman DI (2010) Identification and field activity of a male-produced aggregation pheromone in the pine sawyer beetle, Monochamus galloprovincialis. J Chem Ecol 36:570–583CrossRefPubMedGoogle Scholar
  26. Pureswaran DS, Poland TM (2009) The role of olfactory cues in short-range mate finding by the emerald ash borer, Agrilus planipennis, Fairmaire (Coleoptera: Cerambycidae). J Insect Behav 22:205–216CrossRefGoogle Scholar
  27. R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. Available from Accessed 2014
  28. Reinecke A, Ruther J, Mayer CJ, Hilker M (2006) Optimized trap lure for male Melolontha cockchafers. J Appl Entomol 130:171–176CrossRefGoogle Scholar
  29. Rodriguez-Saona C, Poland TM, Miller JR, Stelinski LL, Grant GG, De Groot P, Buchan L, MacDonald L (2006) Behavioural and electrophysiological responses of the emerald ash borer, Agrilus planipennis, to induced volatiles of Manchurian Ash, Fraxinus mandshurica. Chemoecology 16:75–86CrossRefGoogle Scholar
  30. Ruther J, Reinecke A, Thiemann K, Tolasch T, Francke W, Hilker M (2000) Mate finding in the forest cockchafer, Melolontha hippocastani, mediated by volatiles from plants and females. Physiol Entomol 25:172–179CrossRefGoogle Scholar
  31. Ryall K, Silk PJ, Mayo PM, Crook D, Krimian A, Cossé A, Sweeney J, Scarr T (2012) Attraction of Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) to a volatile pheromone: effects of release rate, host volatile and trap placement. Environ Entomol 41:648–656CrossRefPubMedGoogle Scholar
  32. Ryall K, Fidgen JG, Silk PJ, Scarr TA (2013) Efficacy of the pheromone (3Z)-lactone and the host kairomone (3Z)-hexenol at detecting early infestation of the emerald ash borer, Agrilus planipennis. Entomol Exp Appl 147:126–131CrossRefGoogle Scholar
  33. Siegert NW, McCullough DG, Liebhold AM, Telewski FW (2014) Dendrochronological reconstruction of the epicentre and early spread of emerald ash borer in North America. Divers Distrib 20:847–858CrossRefGoogle Scholar
  34. Silk PJ, Ryall K (2014) Semiochemistry and chemical ecology of the emerald ash borer Agrilus planipennis (Coleoptera: Buprestidae). Can Entomol. doi: 10.4039/tce.2014.58 Google Scholar
  35. Silk PJ, Sweeney JD, Wu J, Price J, Gutowski J, Kettela EG (2007) Evidence for a male-produced pheromone in Tetropium fuscum (F.) (Coleoptera: Cerambycidae). Naturwissenschaften 94:697–701CrossRefPubMedGoogle Scholar
  36. Silk PJ, Ryall K, Lyons B, Sweeney JD, Wu J (2009) A contact sex pheromone component of the emerald ash borer Agrilus planipennis Fairmaire (Coleoptera: Buprestidae). Naturwissenschaften 96:601–608CrossRefPubMedGoogle Scholar
  37. Silk PJ, Ryall K, Mayo P, Lemay M, Grant G, Crook D, Cossé A, Fraser I, Sweeney JD, Lyons DB, Pitt D, Scarr T, Magee D (2011) Evidence for a volatile pheromone in Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) that increases attraction to a host foliar volatile. Environ Entomol 40:904–916CrossRefPubMedGoogle Scholar
  38. Suginome H, Yamada S (1985) Photoinduced transformations, 77. A four-step substitution of a carbonyl group of steroidal ketones by an oxygen atom a new method for the synthesis of cyclic ethers. J Org Chem 50:2489–2494CrossRefGoogle Scholar
  39. Taber DF, Qiu J (2013) Permaleic acid: Baeyer-Villiger oxidation of cyclododecanone. J Chem Educ 90:1103–1104CrossRefGoogle Scholar
  40. van der Mee L, Helmich F, De Bruijn R, Vekemans JAJM, Palmans ARA, Meijer EW (2006) Investigation of lipase-catalysed ring-opening polymerization of lactones with various ring sizes. Kin Evaluat Macromol 39:5021–5027Google Scholar
  41. Vangúr R, Héberger K, Jakus J (2003) Prediction of anti-HIV-1 activity of a series of tetrahydropyrrole molecules. J Chem Inf Comput Sci 43:1829–1836CrossRefGoogle Scholar
  42. Wermuth CG, Ganellin CR, Lindberg P, Mitscher LA (1998) Glossary of terms used in medicinal chemistry (IUPAC Recommendations 1998). Pure Appl Chem 70:1129–1143CrossRefGoogle Scholar
  43. Xu P, Garczynsk SF, Atungulu E, Syed Z, Choo Y-M, Vidal DM, Zitelli CH, Leal WS (2012) Moth sex pheromone receptors and deceitful parapheromones. PLoS ONE 7:1–9CrossRefGoogle Scholar

Copyright information

© Her Majesty the Queen in Right of Canada 2015

Authors and Affiliations

  • P. J. Silk
    • 1
    Email author
  • K. Ryall
    • 2
  • P. Mayo
    • 1
  • D. I. MaGee
    • 3
  • G. Leclair
    • 1
  • J. Fidgen
    • 2
  • R. Lavallee
    • 4
  • J. Price
    • 1
  • J. McConaghy
    • 1
  1. 1.Canadian Forest Service - Atlantic Forestry CentreNatural Resources CanadaFrederictonCanada
  2. 2.Canadian Forest Service - Great Lakes Forestry CentreNatural Resources CanadaSault Ste. MarieCanada
  3. 3.Department of ChemistryUniversity of New BrunswickFrederictonCanada
  4. 4.Ressources Naturelles Canada/ Natural Resources Canada, Service Canadien des Forêts/Canadian Forest ServiceQuébecCanada

Personalised recommendations