Journal of Chemical Ecology

, Volume 41, Issue 1, pp 59–66 | Cite as

Waiting with Bated Breath: Opportunistic Orientation to Human Odor in the Malaria Mosquito, Anopheles gambiae, is Modulated by Minute Changes in Carbon Dioxide Concentration

  • Ben Webster
  • Emerson S. Lacey
  • Ring T. CardéEmail author


Females of the malaria mosquito, Anopheles gambiae, predominantly obtain blood meals within human dwellings. Being highly anthropophilic, human skin odor offers a reliable, host-specific cue, but the challenge posed by pervasive human odor found indoors from used clothing, bedding etc. remains unclear. Anopheles gambiae spends much of its adult life indoors, constantly exposed to human odor even when dwellings are unoccupied. In landing assays, we found that female mosquitoes respond very weakly to human skin odor alone, suggesting that, alone, it is an ineffective landing cue. Landing, however, was dramatically increased by addition of carbon dioxide at a range of concentrations above ambient. Indeed, this effect was seen even when carbon dioxide was just 0.015 % above ambient within the assay cage. The synergistic effect of added carbon dioxide quickly waned, thereby facilitating a highly adaptive “sit-and-wait” ambush strategy, wherein females ignore persistent human odor until a living human is present. Unexpectedly, landing rates in the presence of added carbon dioxide were almost as robust during daytime, when An. gambiae has previously been assumed inactive, possibly facilitating opportunistic feeding at times of day when human dwellings are occupied intermittently. We suggest earlier studies that showed strong upwind flight behavior toward human odor alone could, in fact, have been demonstrating orientation toward a human dwelling rather than toward a living human. This new interpretation of how human odors mediate upwind orientation and landing in An. gambiae is discussed.


Anopheles gambiae Olfaction Landing Behavior Carbon dioxide Skin odor 



This work was funded by an R56AI099778 (National Institute of Allergy and Infectious Diseases) grant to Anandasankar Ray and Ring Cardé. The granting agencies had no role in experimental design or analysis. We are grateful to Anandasankar Ray for his comments and Bradley White for our colony of An. gambiae.


  1. Bruce TJA, Pickett JA (2011) Perception of plant volatile blends by herbivorous insects - finding the right mix. Phytochemistry 72:1605–1611. doi: 10.1016/j.phytochem.2011.04.011 PubMedCrossRefGoogle Scholar
  2. Cardé RT, Gibson G (2010) Host finding by female mosquitoes: mechanisms of orientation to host odours and other cues. In: Takken W, Knols BGJ (eds) Olfaction in vector-host interactions. Wageningen Academic Publishers, Wageningen, pp 115–142. doi: 10.3920/978-90-8686-698-4 Google Scholar
  3. Dekker T, Geier M, Cardé RT (2005) Carbon dioxide instantly sensitizes female yellow fever mosquitoes to human skin odours. J Exp Biol 208:2963–2972. doi: 10.1242/jeb.01736 PubMedCrossRefGoogle Scholar
  4. Development Core Team (2012) R: a language and environment for statistical computing, 2.15.0 edn. R Foundation for Statistical Computing, ViennaGoogle Scholar
  5. Faye O, Konate L, Mouchet J, Fontenille D, Sy N, Hebrard G, Herve JP (1997) Indoor resting by outdoor biting females of Anopheles gambiae complex (Diptera: Culicidae) in the sahel of northern Senegal. J Med Entomol 34:285–289PubMedGoogle Scholar
  6. Gillies MT (1954) Studies of house leaving and outside resting of Anopheles gambiae Giles and Anopheles funestus Giles in East Africa. I.—The outside resting population. Bull Entomol Res 45:361–373. doi: 10.1017/S0007485300027188 CrossRefGoogle Scholar
  7. Gillies MT (1980) The role of carbon dioxide in host-finding by mosquitos (Diptera: Culicidae): a review. Bull Entomol Res 70:525–32. doi: 10.1017/S0007485300007811 CrossRefGoogle Scholar
  8. Haddow AJ (1942) The mosquito fauna and climate of native huts at Kisumu, Kenya. Bull Entomol Res 33:91–142. doi: 10.1017/S0007485300026389 CrossRefGoogle Scholar
  9. Healy TP, Copland MJW (1995) Activation of Anopheles gambiae mosquitoes by carbon dioxide and human breath. Med Vet Entomol 9:331–336. doi: 10.1111/j.1365-2915.1995.tb00143.x PubMedCrossRefGoogle Scholar
  10. Jones MDR, Gubbins SJ (1978) Changes in circadian flight activity of mosquito Anopheles gambiae in relation to insemination, feeding and oviposition. Physiol Entomol 3:213–220. doi: 10.1111/j.1365-3032.1978.tb00151.x CrossRefGoogle Scholar
  11. Klowden MJ (2007) Making generalizations about vectors: is there a physiology of “the mosquito”? Entomol Res 37:1–13. doi: 10.1111/j.1748-5967.2007.00044.x CrossRefGoogle Scholar
  12. Krober T, Kessler S, Frei J, Bourquin M, Guerin PM (2010) An in vitro assay for testing mosquito repellents employing a warm body and carbon dioxide as a behavioral activator. J Am Mosq Control Assoc 26:381–386. doi: 10.2987/10-6044.1 PubMedCrossRefGoogle Scholar
  13. Lacey ES, Cardé RT (2011) Activation, orientation and landing of female Culex quinquefasciatus in response to carbon dioxide and odour from human feet: 3D flight analysis in a wind tunnel. Med Vet Entomol 25:94–103. doi: 10.1111/j.1365-2915.2010.00921.x PubMedCrossRefGoogle Scholar
  14. Lacey ES, Ray A, Cardé RT (2014) Close encounters: contributions of carbon dioxide and human skin odour to finding and landing on a host in Aedes aegypti. Physiol Entomol 39:60–68. doi: 10.1111/phen.12048 PubMedCrossRefGoogle Scholar
  15. Logan JG, Stanczyk NM, Hassanali A, Kemei J, Santana AEG, Ribeiro KAL, Pickett JA, Mordue J (2010) Arm-in-cage testing of natural human-derived mosquito repellents. Malar J 9:239. doi: 10.1186/1475-2875-9-239 PubMedCentralPubMedCrossRefGoogle Scholar
  16. Lorenz LM et al (2013) Taxis assays measure directional movement of mosquitoes to olfactory cues. Parasite Vector 6:131. doi: 10.1186/1756-3305-6-131 CrossRefGoogle Scholar
  17. Manda H, Gouagna LC, Foster WA, Jackson RJ, Beier JC, Githure JI, Hassanali A (2007) Effect of discriminative plant-sugar feeding on the survival and fecundity of Anopheles gambiae. Malar J 6:113. doi: 10.1186/1475-2875-6-113 PubMedCentralPubMedCrossRefGoogle Scholar
  18. McMeniman CJ, Corfas RA, Matthews BJ, Ritchie SA, Vosshall LB (2014) Multimodal integration of carbon dioxide and other sensory cues drives mosquito attraction to humans. Cell 156:1060–1071. doi: 10.1016/j.cell.2013.12.044 PubMedCentralPubMedCrossRefGoogle Scholar
  19. Menger DJ, Van Loon JJA, Takken W (2014) Assessing the efficacy of candidate mosquito repellents against the background of an attractive source that mimics a human host. Med Vet Entomol 28:407–413. doi: 10.1111/mve.12061 PubMedCrossRefGoogle Scholar
  20. Moiroux N, Gomez MB, Pennetier C, Elanga E, Djènontin A, Chandre F, Djègbé I, Guis H, Corbel V (2012) Changes in Anopheles funestus biting behavior following universal coverage of long-lasting insecticidal nets in Benin. J Infect Dis 206:1622–1629. doi: 10.1093/infdis/jis565 PubMedCrossRefGoogle Scholar
  21. Molina R, Benito A, Blanca F, Roche J, Otunga B, Alvar J (1996) The anophelines of Equatorial Guinea. Ethology and susceptibility studies. Res Rev Parasitol 56:105–110Google Scholar
  22. Müller GC, Beier JC, Traore SF, Toure MB, Traore MM, Bah S, Doumbia S, Schlein Y (2010) Field experiments of Anopheles gambiae attraction to local fruits/seedpods and flowering plants in Mali to optimize strategies for malaria vector control in Africa using attractive toxic sugar bait methods. Malar J 9:262. doi: 10.1186/1475-2875-9-262 PubMedCentralPubMedCrossRefGoogle Scholar
  23. Muturi E, Muriu S, Shililu J, Mwangangi JM, Jacob BG, Mbogo C, Githure J, Novak RJ (2008) Blood-feeding patterns of Culex quinquefasciatus and other culicines and implications for disease transmission in Mwea rice scheme, Kenya. Parasitol Res 102:1329–1335. doi: 10.1007/s00436-008-0914-7 PubMedCrossRefGoogle Scholar
  24. Njie M, Dilger E, Lindsay SW, Kirby MJ (2009) Importance of eaves to house entry by Anopheline, but not Culicine, mosquitoes. J Med Entomol 46:505–510. doi: 10.1603/033.046.0314 PubMedCrossRefGoogle Scholar
  25. Njiru BN, Mukabana WR, Takken W, Knols BGJ (2006) Trapping of the malaria vector Anopheles gambiae with odour-baited MM-X traps in semi-field conditions in western Kenya. Malar J 5:1–8. doi: 10.1186/1475-2875-5-39 CrossRefGoogle Scholar
  26. Paaijmans KP, Thomas MB (2011) The influence of mosquito resting behaviour and associated microclimate for malaria risk. Malar J 10:183. doi: 10.1186/1475-2875-10-183 PubMedCentralPubMedCrossRefGoogle Scholar
  27. Pates HV, Takken W, Stuke K, Curtis CF (2001) Differential behaviour of Anopheles gambiae sensu stricto (Diptera : Culicidae) to human and cow odours in the laboratory. Bull Entomol Res 91:289–296. doi: 10.1079/ber200198 PubMedCrossRefGoogle Scholar
  28. Qiu YT, Smallegange RC, Van Loon JJA, Ter Braak CJF, Takken W (2006) Interindividual variation in the attractiveness of human odours to the malaria mosquito Anopheles gambiae s. s. Med Vet Entomol 20:280–287. doi: 10.1111/j.1365-2915.2006.00627.x PubMedCrossRefGoogle Scholar
  29. Qiu YT et al (2007) Attractiveness of MM-X traps baited with human or synthetic odor to mosquitoes (Diptera : Culicidae) in the Gambia. J Med Entomol 44:970–983. doi: 10.1603/0022-2585(2007)44[970:aomtbw];2 PubMedCentralPubMedCrossRefGoogle Scholar
  30. Reddy MR, Overgaard HJ, Abaga S, Reddy VP, Caccone A, Kiszewski AE, Slotman MA (2011) Outdoor host seeking behaviour of Anopheles gambiae mosquitoes following initiation of malaria vector control on Bioko Island, Equatorial Guinea. Malar J 10:184. doi: 10.1186/1475-2875-10-184 PubMedCentralPubMedCrossRefGoogle Scholar
  31. Ribbands CR (1946) Moonlight and house-hauting habits of female anophelines in West Africa. Bull Entomol Res 36:395–417PubMedCrossRefGoogle Scholar
  32. Rund SSC, Bonar NA, Champion MM, Ghazi JP, Houk CM, Leming MT, Syed Z, Duffield GE (2013) Daily rhythms in antennal protein and olfactory sensitivity in the malaria mosquito Anopheles gambiae. Sci Rep 3:2494. doi: 10.1038/srep02494 PubMedCentralPubMedCrossRefGoogle Scholar
  33. Smallegange RC, Schmied WH, van Roey KJ, Verhulst NO, Spitzen J, Mukabana WR, Takken W (2010) Sugar-fermenting yeast as an organic source of carbon dioxide to attract the malaria mosquito Anopheles gambiae. Malar J 9:292. doi: 10.1186/1475-2875-9-292 PubMedCentralPubMedCrossRefGoogle Scholar
  34. Smallegange RC, van Gemert GJ, van de Vegte-Bolmer M, Gezan S, Takken W, Sauerwein RW, Logan JG (2013) Malaria infected mosquitoes xxpress enhanced attraction to human odor. PLoS One 8 doi: 10.1371/journal.pone.0063602
  35. Snow WF (1987) Studies of house-entering habits of mosquitos in the Gabia, West Africa: experiments with prefabricated huts with varied wall apertures. Med Vet Entomol 1:9–21. doi: 10.1111/j.1365-2915.1987.tb00318.x PubMedCrossRefGoogle Scholar
  36. Spitzen J, Smallegange RC, Takken W (2008) Effect of human odours and positioning of CO2 release point on trap catches of the malaria mosquito Anopheles gambiae sensu stricto in an olfactometer. Physiol Entomol 33:116–122. doi: 10.1111/j.1365-3032.2008.00612.x CrossRefGoogle Scholar
  37. Spitzen J et al (2013) A 3D analysis of flight behavior of Anopheles gambiae sensu stricto malaria mosquitoes in response to human odor and heat. PLoS ONE 8:e62995. doi: 10.1371/journal.pone.0062995 PubMedCentralPubMedCrossRefGoogle Scholar
  38. Takken W, Knols BGJ (1999) Odor-mediated behavior of Afrotropical malaria mosquitoes. Annu Rev Entomol 44:131–157. doi: 10.1146/annurev.ento.44.1.131 PubMedCrossRefGoogle Scholar
  39. Takken W, Verhulst NO (2013) Host preferences of blood-feeding mosquitoes. Annu Rev Entomol 58:433–453. doi: 10.1146/annurev-ento-120811-153618 PubMedCrossRefGoogle Scholar
  40. Takken W, Dekker T, Wijnholds YG (1997) Odor-mediated flight behavior of Anopheles gambiae Giles Sensu Stricto and A.stephensi Liston in response to CO2, acetone, and 1-octen-3-ol (Diptera: Culicidae). J Insect Behav 10:395–407. doi: 10.1007/bf02765606 CrossRefGoogle Scholar
  41. Tauxe GM, MacWilliam D, Boyle SM, Guda T, Ray A (2013) Targeting a dual detector of skin and CO2 to modify mosquito host seeking. Cell 155:1365–1379. doi: 10.1016/j.cell.2013.11.013 PubMedCentralPubMedCrossRefGoogle Scholar
  42. Thomson RCM (1948) Studies on Anopheles gambiae and A. melas in and around Lagos. Bull Entomol Res 38:527–558PubMedCrossRefGoogle Scholar
  43. Trpis M, Hausermann W (1978) Genetics of house-entering behavior in East-African populations of Aedes aegypti (L) (Diptera:Culicidae) and its relevance to speciation. Bull Ent Res 68:521–532CrossRefGoogle Scholar
  44. Tuno N, Kjaerandsen J, Badu K, Kruppa T (2010) Blood-feeding behavior of Anopheles gambiae and Anopheles melas in Ghana, Western Africa. J Med Entomol 47:28–31. doi: 10.1603/033.047.0104 PubMedCrossRefGoogle Scholar
  45. Turissini DA, Gamez S, White BJ (2014) Genome-wide patterns of polymorphism in an inbred line of the African malaria mosquito Anopheles gambiae. Genome Biol Evol. doi: 10.1093/gbe/evu243 PubMedCentralPubMedGoogle Scholar
  46. Turner SL, Li N, Guda T, Githure J, Cardé RT, Ray A (2011) Ultra-prolonged activation of CO2-sensing neurons disorients mosquitoes. Nature 474:87–U114. doi: 10.1038/nature10081 PubMedCentralPubMedCrossRefGoogle Scholar
  47. Webster B, Bruce T, Pickett J, Hardie J (2010) Volatiles functioning as host cues in a blend become nonhost cues when presented alone to the black bean aphid. Anim Behav 79:451–457. doi: 10.1016/j.anbehav.2009.11.028 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ben Webster
    • 1
  • Emerson S. Lacey
    • 1
  • Ring T. Cardé
    • 1
    Email author
  1. 1.Department of EntomologyUniversity of CaliforniaRiversideUSA

Personalised recommendations