Advertisement

Journal of Chemical Ecology

, Volume 41, Issue 1, pp 44–51 | Cite as

Stereoisomeric Analysis of 6,10,14-Trimethylpentadecan-2-ol and the Corresponding Ketone in Wing Extracts from African Bicyclus Butterfly Species

  • E. Hedenström
  • E. A. Wallin
  • J. Andersson
  • J. Bång
  • H.-L. Wang
  • C. Löfstedt
  • O. Brattström
  • P. Baquet
Article

Abstract

Gas chromatography (GC) and mass spectrometry (MS) were used to determine the stereoisomeric compositions of 6,10,14-trimethylpentadecan-2-ol and 6,10,14-trimethylpentadecan-2-one in wing extracts from 17 Bicyclus butterfly species from different regions of Africa. All samples were purified using solid phase extraction (SPE). Since some species contained both alcohol and ketone, these were separated and the ketone was reduced to the alcohol before analysis as either (R)-trans-chrysanthemoyl or (S)-2-acetoxypropionyl esters. A novel asymmetric synthesis was developed for a reference mixture of (2R/S,6S,10R)-6,10,14-trimethylpentadecan-2-ol with known composition of the eight stereoisomers. The mixture then was used as the (R)-trans-chrysanthemoyl esters to correlate each of the eight gas chromatographic peaks to a specific stereoisomer of the extracted wing compounds. Seven butterfly species showed (2R,6R,10R)-configuration of the alcohol, four species contained minute amounts of alcohol too small to determine the stereochemistry, nine species showed (6R,10R)-configuration of the ketone, and one species contained minute amounts of ketone too small to determine the stereochemistry. No other stereoisomers of alcohol or ketone could be detected in the extracts, and the quantities of the compounds in the wing extracts varied from 5 to 900 ng per sample for each species.

Keywords

Asymmetric synthesis GC/MS 6,10,14-Trimethylpentadecan-2-one Wing compounds Stereoisomers 

Notes

Acknowledgments

We gratefully acknowledge P. Brakefield and C. Nieberding for financing the collection of wings from the Bicyclus spp butterflies. The research was supported by the EU (European Regional Development Fund) and the County Administrative Board of Västernorrland (Länsstyrelsen).

Supplementary material

10886_2014_539_MOESM1_ESM.docx (35 kb)
ESM 1 (DOCX 35 kb)

References

  1. Anderbrant, O (1999) Sawflies and seed wasps. In: Hardie J, Minks AK (eds) Pheromones of non-Lepidopteran insects associated with agricultural plants. CABI Publishing, pp 199–226Google Scholar
  2. Anderbrant O, Löfqvist J, Högberg H-E, Hedenström E, Baldassari N, Baronio P, Kolmakova G, Lyons B, Naito T, Odinokov V, Simandl J, Supatashvili A, Tai A, Tourianov R (2000) Geographic variation in the field response of male European Pine Sawflies, Neodiprion sertifer, to different pheromone stereoisomers and esters. Entomol Exp Appl 95:229–239CrossRefGoogle Scholar
  3. Ashby EC, Lin JJ (1978) Selective reduction of alkenes and alkynes by the reagent lithium aluminum hydride-transition-metal halide. J Org Chem 43:2567–2572CrossRefGoogle Scholar
  4. Bång J, Hedenström E, Sjödin K (2011) Purification, stereoisomeric analysis and quantification of sex pheromone precursors in female whole body extracts from pine sawfly species. J Chem Ecol 37:125–133PubMedCrossRefGoogle Scholar
  5. Bång J, Hedenström E, Anderbrant O (2012) Stereoisomeric separation of derivatized 2-alkanols using gas chromatography–mass spectrometry: sex pheromone precursors found in pine sawfly species. Anal Lett 45:1016–1027CrossRefGoogle Scholar
  6. Bergström G, Wassgren AB, Anderbrant O, Fägerhag J, Edlund H, Hedenström E, Högberg H-E, Geri C, Auger MA, Varama M, Hansson BS, Löfqvist J (1995) Sex-pheromone of the pine sawfly Diprion pini (Hymenoptera, Diprionidae) – chemical identification, synthesis and biological activity. Experientia 51:370–380CrossRefGoogle Scholar
  7. Burger BV, Nell AE, Smit D, Spies HSC, Mackenroth WM, Groche D, Atkinson PR (1993) Constituents of wing gland and abdominal hair-pencil secretions of male African sugarcane borer, Eldana saccharina Walker (Lepidoptera, Pyralidae). J Chem Ecol 19:2255–2277PubMedCrossRefGoogle Scholar
  8. Burns DH, Millar JD, Chan H-K, Delaney MO (1997) Scope and utility of a new soluble copper catalyst [CuBr-LiSPh-LiBr-THF]: A comparison with other copper catalysts in their ability to couple one equivalent of Grignard reagent with an alkyl sulfonate. J Am Chem Soc 119:2125–2133CrossRefGoogle Scholar
  9. Enders D, Schüsseler T (2002) Asymmetric synthesis of all stereoisomers of 7,11-dimethylheptadecane and 7-methylheptadecane, the female pheromone components of the spring hemlock looper and the pitch pine looper. Tetrahedron Lett 43:3467–3470CrossRefGoogle Scholar
  10. Hall DR, Cork A, Lester R, Nesbitt BF, Zagatti P (1987) Sex-pheromones of rice moth, Corcyra cephalonica Stainton.2. Identification and role of female pheromone. J Chem Ecol 13:1575–1589PubMedCrossRefGoogle Scholar
  11. Hedenström E, Nguyen B-V, Silks LA III (2002) Do enzymes recognise remotely located stereocentres? Highly enantioselective Candida rugosa lipase-catalysed esterification of the 2- to 8-methyldecanoic acids. Tetrahedron Asymmetry 13:835–844CrossRefGoogle Scholar
  12. Högberg H-E, Hedenström E, Fägerhag J, Servi S (1992) Bakers’ yeast reduction of thiophenepropenals. Enantioselective synthesis of (S)-2-methyl-1-alkanols via bakers’ yeast mediated reduction of 2-methyl-3-(2-thiophene)propenals. J Org Chem 57:2052–2059CrossRefGoogle Scholar
  13. Kandula SRV, Kumar P (2006) An asymmetric aminohydroxylation route to cis-2,6-disubstituted piperidine-3-ol: application to the synthesis of (−)-deoxocassine. Tetrahedron 62:9942–9948CrossRefGoogle Scholar
  14. Kimura T, Carlson DA, Mori K (2001) Synthesis of all the stereoisomers of 13,17-dimethyl-1-tritriacontene and 13,17-dimethyl-1-pentatriacontene, the contact sex pheromone components of the female tsetse fly, Glossina austeni. Eur J Org Chem 2001:3385–3390CrossRefGoogle Scholar
  15. Mori K, Harada H, Zagatti P, Cork A, Hall DR (1991) Pheromone synthesis, CXXVI. Synthesis and biological activity of four stereoisomers of 6,10,14-trimethyl-2-pentadecanol, the female-produced sex pheromone of rice moth (Corcyra cephalonica). Liebigs Ann Chem 3:259–267CrossRefGoogle Scholar
  16. Nagamitsu T, Sunazuka T, Tanaka H, Omura S, Sprengeler PA, Smith AB (1996) Total synthesis of (+)-Lactacystin. J Am Chem Soc 118:3584–3590CrossRefGoogle Scholar
  17. Nakamura Y, Mori K (2000) New synthesis of the rice moth and stink bug pheromones by employing (2R,6S)-7-acetoxy-2,6-dimethyl-1-heptanol as a building block. Biosci Biotechnol Biochem 64:1713–1721PubMedCrossRefGoogle Scholar
  18. Nieberding CM, de Vos H, Schneider MV, Lassance JM, Estramil N, Andersson J, Bång J, Hedenstrom E, Löfstedt C, Brakefield PM (2008) The male sex pheromone of the butterfly Bicyclus anynana: towards an evolutionary analysis. PLoS One 3:e2751Google Scholar
  19. Nieberding CM, Fischer K, Saastamoinen M, Allen CE, Wallin EA, Hedenström E, Brakefield PM (2012) Cracking the olfactory code of a butterfly: the scent of ageing. Ecol Lett 15:415–424PubMedCrossRefGoogle Scholar
  20. Sabbani S, Hedenström E, Nordin O (2006) The enantioselectivity of Candida rugosa lipase is influenced by the particle size of the immobilising support material Accurel. J Mol Catal B Enzym 42:1–9Google Scholar
  21. Salimova EV, Kukovinets OS, Kasradze VG, Galin FZ, Kuchin AV, Koroleva AA (2003) Oxidative transformations of polyprenols. Chem Nat Comp 39:303–306CrossRefGoogle Scholar
  22. Sasaerila Y, Gries R, Khaskin G, King S, Takakcs S, Hardi (2003) Sex pheromone components of male Tirathaba mundella (Lepidoptera: Pyralidae). Chemoecology 13:89–93Google Scholar
  23. Schulz S, Yildizhan S, van Loon JJA (2011) The biosynthesis of hexahydrofarnesylacetone in the butterfly Pieris brassicae. J Chem Ecol 37:360–363PubMedCrossRefGoogle Scholar
  24. Shibata C, Furukawa A, Mori K (2002) Synthesis of racemic and diastereomeric mixtures of 3,7,11,15-tetramethylhentriacontane and 4,8,12,16-tetramethyldotriacontane, the cuticular tetramethylalkanes of the tsetse fly, Glossina brevipalpis. Biosci Biotechnol Biochem 66:582–587PubMedCrossRefGoogle Scholar
  25. Umbreit MA, Sharpless KB (1977) Allylic oxidation of olefins by catalytic and stoichiometric selenium dioxide with tert-butyl hydroperoxide. J Am Chem Soc 99:5526–5528CrossRefGoogle Scholar
  26. Wassgren AB, Anderbrant O, Löfqvist J, Hansson BS, Bergström G, Hedenström E, Högberg H-E (1992) Pheromone related-compounds in pupal and adult female Pine Sawflies, Neodiprion sertifer, of different age and different parts of the body. J Insect Physiol 38:885–893CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • E. Hedenström
    • 1
  • E. A. Wallin
    • 1
  • J. Andersson
    • 1
  • J. Bång
    • 1
  • H.-L. Wang
    • 2
  • C. Löfstedt
    • 2
  • O. Brattström
    • 3
  • P. Baquet
    • 4
  1. 1.Eco-Chemistry, Department of Chemical EngineeringMid Sweden UniversitySundsvallSweden
  2. 2.Department of BiologyLund UniversityLundSweden
  3. 3.Department of ZoologyCambridge UniversityCambridgeUK
  4. 4.Evolutionary Ecology and Genetics group, Biodiversity Research Centre, Earth and Life Institute, Académie LouvainLouvain-la-NeuveBelgium

Personalised recommendations