Journal of Chemical Ecology

, Volume 40, Issue 8, pp 869–877 | Cite as

Adaptation to Nicotine Feeding in Myzus persicae

  • John S. Ramsey
  • Dezi A. Elzinga
  • Pooja Sarkar
  • Yi-Ran Xin
  • Murad Ghanim
  • Georg Jander


Lineages of the generalist hemipteran herbivore Myzus persicae (green peach aphid) that have expanded their host range to include tobacco often have elevated nicotine tolerance. The tobacco-adapted M. persicae lineage used in this study was able to reproduce on nicotine-containing artificial diets at concentrations that were 15-fold higher than those that were lethal to a non-adapted M. persicae lineage. Fecundity of the nicotine-tolerant M. persicae lineage was increased by 100 μM nicotine in artificial diet, suggesting that this otherwise toxic alkaloid can serve as a feeding stimulant at low concentrations. This lineage also was pre-adapted to growth on tobacco, exhibiting no drop in fecundity when it was moved onto tobacco from a different host plant. Although growth of the non-tobacco-adapted M. persicae lineage improved after three generations on tobacco, this higher reproductive rate was not associated with increased nicotine tolerance. Myzus persicae gene expression microarrays were used to identify transcripts that are up-regulated in response to nicotine in the tobacco-adapted lineage. Induced expression was found for CYP6CY3, which detoxifies nicotine in M. persicae, other genes encoding known classes of detoxifying enzymes, and genes encoding secreted M. persicae salivary proteins.


Myzus persicae nicotine tobacco cytochrome P450 Hemiptera Aphididae 

Supplementary material

10886_2014_482_MOESM1_ESM.xls (38 kb)
Supplemental Table 1(XLS 38 kb)
10886_2014_482_MOESM2_ESM.xls (145 kb)
Supplemental Table 2(XLS 145 kb)
10886_2014_482_MOESM3_ESM.xlsx (14 kb)
Supplemental Table 3(XLSX 14 kb)


  1. Bass C, Zimmer CT, Riveron JM, Wilding CS, Wondji CS, Kaussmann M, Field LM, Williamson MS, Nauen R (2014) Gene amplification and microsatellite polymorphism underlie a recent insect host shift. Proc Natl Acad Sci U S A 110:19460–19465CrossRefGoogle Scholar
  2. Blackman RL, Eastop VF (2000) Aphids on the world’s crops. Wiley, ChichesterGoogle Scholar
  3. Brennan Y, Callen WN, Christoffersen L, Dupree P, Goubet F, Healey S, Hernandez M, Keller M, Li K, Palackal N et al (2004) Unusual microbial xylanases from insect guts. Appl Environ Microbiol 70:3609–3617PubMedCentralPubMedCrossRefGoogle Scholar
  4. Cardoza YJ, Wang SF, Reidy-Crofts J, Edwards OR (2006) Phloem alkaloid tolerance allows feeding on resistant Lupinus angustifolius by the aphid Myzus persicae. J Chem Ecol 32:1965–1976PubMedCrossRefGoogle Scholar
  5. Carolan JC, Fitzroy CI, Ashton PD, Douglas AE, Wilkinson TL (2009) The secreted salivary proteome of the pea aphid Acyrthosiphon pisum characterised by mass spectrometry. Proteomics 9:2457–2467PubMedCrossRefGoogle Scholar
  6. Carolan JC, Caragea D, Reardon KT, Mutti NS, Dittmer N, Pappan K, Cui F, Castaneto M, Poulain J, Dossat C et al (2011) Predicted effector molecules in the salivary secretome of the pea aphid (Acyrthosiphon pisum): a dual transcriptomic/proteomic approach. J Proteome Res 10:1505–1518PubMedCrossRefGoogle Scholar
  7. Cooper WR, Dillwith JW, Puterka GJ (2010) Salivary proteins of Russian wheat aphid (Hemiptera: Aphididae). Environ Entomol 39:223–231PubMedCrossRefGoogle Scholar
  8. Cooper WR, Dillwith JW, Puterka GJ (2011) Comparisons of salivary proteins from five aphid (Hemiptera: Aphididae) species. Environ Entomol 40:151–156PubMedCrossRefGoogle Scholar
  9. Cui F, Smith CM, Reese J, Edwards O, Reeck G (2012) Polymorphisms in salivary-gland transcripts of Russian wheat aphid biotypes 1 and 2. Insect Sci 19:429–440CrossRefGoogle Scholar
  10. Devine GJ, Harling ZK, Scarr AW, Devonshire AL (1996) Lethal and sublethal effects of imidacloprid on nicotine-tolerant Myzus nicotinianae and Myzus persicae. Pestic Sci 48:57–62CrossRefGoogle Scholar
  11. Elzinga DA, De Vos M, Jander G (2014) Suppression of plant defenses by a Myzus persicae (green peach aphid) salivary effector protein. Mol Plant Microbe Interact 27:747–756Google Scholar
  12. Harmel N, Letocart E, Cherqui A, Giordanengo P, Mazzucchelli G, Guillonneau F, De Pauw E, Haubruge E, Francis F (2008) Identification of aphid salivary proteins: a proteomic investigation of Myzus persicae. Insect Mol Biol 17:165–174PubMedCrossRefGoogle Scholar
  13. Kim JH, Jander G (2007) Myzus persicae (green peach aphid) feeding on Arabidopsis induces the formation of a deterrent indole glucosinolate. Plant J 49:1008–1019PubMedCrossRefGoogle Scholar
  14. Kinnersley AM, Dougall DK (1980) Correlation between the nicotine content of tobacco plants and callus cultures. Planta 149:205–206PubMedCrossRefGoogle Scholar
  15. Kliot A, Kontsedalov S, Ramsey JS, Jander G, Ghanim M (2014) Adaptation to nicotine in the facultative tobacco-feeding hemipteran Bemisia tabaci. Pest Manag Sci. doi:10.1002/ps.3739
  16. Kumar P, Pandit SS, Steppuhn A, Baldwin IT (2014) Natural history-driven, plant-mediated RNAi-based study reveals CYP6B46’s role in a nicotine-mediated antipredator herbivore defense. Proc Natl Acad Sci U S A 111:1245–1252PubMedCentralPubMedCrossRefGoogle Scholar
  17. Leshkowitz D, Gazit S, Reuveni E, Ghanim M, Czosnek H, McKenzie C, Shatters RL Jr, Brown JK (2006) Whitefly (Bemisia tabaci) genome project: analysis of sequenced clones from egg, instar, and adult (viruliferous and non-viruliferous) cDNA libraries. BMC Genomics 7:79PubMedCentralPubMedCrossRefGoogle Scholar
  18. Margaritopoulos JT, Kasprowicz L, Mallock GL, Fenton B (2009) Tracking the global dispersal of a cosmopolitan insect pest, the peach potato aphid. BMC Ecol 9:13PubMedCentralPubMedCrossRefGoogle Scholar
  19. Miles PW (1999) Aphid Saliva. Biol Rev 74:41–85CrossRefGoogle Scholar
  20. Murray CL, Quaglia M, Arnason JT, Morris CE (1994) A putative nicotine pump at the metabolic blood-brain barrier of the tobacco hornworm. J Neurobiol 25:23–34PubMedCrossRefGoogle Scholar
  21. Nauen R, Denholm I (2005) Resistance of insect pests to neonicotinoid insecticides: current status and future prospects. Arch Insect Biochem Physiol 58:200–215PubMedCrossRefGoogle Scholar
  22. Nicholson SJ, Hartson SD, Puterka GJ (2012) Proteomic analysis of secreted saliva from Russian wheat aphid (Diuraphis noxia Kurd.) biotypes that differ in virulence to wheat. J Proteome 75:2252–2268CrossRefGoogle Scholar
  23. Olivares-Donoso R, Troncoso AJ, Tapia DH, Aguilera-Olivares D, Niemeyer HM (2007) Contrasting performances of generalist and specialist Myzus persicae (Hemiptera: Aphididae) reveal differential prevalence of maternal effects after host transfer. Bull Entomol Res 97:61–67PubMedCrossRefGoogle Scholar
  24. Puinean AM, Foster SP, Oliphant L, Denholm I, Field LM, Millar NS, Williamson MS, Bass C (2010) Amplification of a cytochrome P450 gene is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. PLoS Genet 6:e1000999PubMedCentralPubMedCrossRefGoogle Scholar
  25. R Development Core Team (2005) R: a language and environment for statistical computing. Statistical Computing, Vienna, Austria,
  26. Ramsey JS, Jander G (2008) Testing nicotine tolerance in aphids using an artificial diet experiment. J Vis Exp 15:701PubMedGoogle Scholar
  27. Ramsey JS, Wilson AC, De Vos M, Sun Q, Tamborindeguy C, Winfield A, Malloch G, Smith DM, Fenton B, Gray SM et al (2007) Genomic resources for Myzus persicae: EST sequencing, SNP identification, and microarray design. BMC Genomics 8:423PubMedCentralPubMedCrossRefGoogle Scholar
  28. Ramsey JS, Rider DS, Walsh TK, De Vos M, Gordon KHJ, Ponnala L, Macmil SL, Roe BA, Jander G (2010) Comparative analysis of detoxification enzymes in Acrythosiphon pisum and Myzus persicae. Insect Mol Biol 19(Suppl 2):155–164PubMedCrossRefGoogle Scholar
  29. Rao SAK, Carolan JC, Wilkinson TL (2013) Proteomic profiling of cereal aphid saliva reveals both ubiquitous and adaptive secreted proteins. PLoS One 8:e0057413CrossRefGoogle Scholar
  30. Scott JG, Liu N, Wen Z (1998) Insect cytochromes P450: diversity, insecticide resistance and tolerance to plant toxins. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 121:147–155PubMedCrossRefGoogle Scholar
  31. Shigehara T, Takada H (2003) Changes in genotypic composition of Myzus persicae (Hemiptera: Aphididae) on tobacco during the past two decades in Japan. Bull Entomol Res 93:537–544PubMedCrossRefGoogle Scholar
  32. Smyth GK (2005) Limma: linear models for microarray data. In: Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W (eds) Computational biology bolutions using R and Bioconductor. Springer, New York, pp 397–420CrossRefGoogle Scholar
  33. Smyth GK, Speed T (2003) Normalization of cDNA microarray data. Methods 31:265–273PubMedCrossRefGoogle Scholar
  34. Snyder MJ, Feyereisen R (1993) Induction of cytochrome P-450 activities by nicotine in the tobacco hornworm, Manduca sexta. J Chem Ecol 19:2903–2916PubMedCrossRefGoogle Scholar
  35. Thurston R, Smith WT, Cooper BP (1966) Alkaloid secretion by trichomes of Nicotiana species and resistance to aphids. Ent Exp Appl 9:428–432CrossRefGoogle Scholar
  36. Will T, Steckbauer K, Hardt M, van Bel AJE (2012) Aphid gel saliva: sheath structure, protein composition and secretory dependence on stylet-tip milieu. PLoS One 7:e0046903CrossRefGoogle Scholar
  37. Yang Z, Zhang F, He Q, He G (2005) Molecular dynamics of detoxification and toxin-tolerance genes in brown planthopper (Nilaparvata lugens Stal., Homoptera: Delphacidae) feeding on resistant rice plants. Arch Insect Biochem Physiol 59:59–66PubMedCrossRefGoogle Scholar
  38. Zepeda-Paulo FA, Simon JC, Ramirez CC, Fuentes-Contreras E, Margaritopoulos JT, Wilson AC, Sorenson CE, Briones LM, Azevedo R, Ohashi DV et al (2010) The invasion route for an insect pest species: the tobacco aphid in the New World. Mol Ecol 19:4738–4752PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • John S. Ramsey
    • 1
  • Dezi A. Elzinga
    • 1
  • Pooja Sarkar
    • 1
  • Yi-Ran Xin
    • 1
  • Murad Ghanim
    • 2
  • Georg Jander
    • 1
  1. 1.Boyce Thompson InstituteIthacaUSA
  2. 2.Department of EntomologyVolcani CenterBet DaganIsrael

Personalised recommendations