Advertisement

Journal of Chemical Ecology

, Volume 40, Issue 2, pp 169–180 | Cite as

Sex-Specific Trail Pheromone Mediates Complex Mate Finding Behavior in Anoplophora glabripennis

  • Kelli Hoover
  • Melody Keena
  • Maya Nehme
  • Shifa Wang
  • Peter Meng
  • Aijun Zhang
Article

Abstract

Anoplophora glabripennis (Motsch.) is a polyphagous member of the Cerambycidae, and is considered, worldwide, to be one of the most serious quarantine pests of deciduous trees. We isolated four chemicals from the trail of A. glabripennis virgin and mated females that were not present in trails of mature males. These compounds were identified as 2-methyldocosane and (Z)-9-tricosene (major components), as well as (Z)-9-pentacosene and (Z)-7-pentacosene (minor components); every trail wash sample contained all four chemical components, although the amounts and ratios changed with age of the female. Males responded to the full pheromone blend, regardless of mating status, but virgin females chose the control over the pheromone, suggesting that they may use it as a spacing pheromone to avoid intraspecific competition and maximize resources. Virgin, but not mated, males also chose the major pheromone components in the absence of the minor components, over the control. Taken together, these results indicate that all four chemicals are components of the trail pheromone. The timing of production of the ratios of the pheromone blend components that produced positive responses from males coincided with the timing of sexual maturation of the female.

Keywords

Sex trail pheromone Invasive species 2-Methyldocosane (Z)-9-Tricosene (Z)-9-Pentacosene (Z)-7-Pentacosene Mate finding Coleaptera Cerambycidae 

Notes

Acknowledgments

We thank J. Nie of the United States Department of Agriculture (USDA) Invasive Insect Behavior and Biocontrol Laboratory for assistance with chemical analysis and syntheses, and G. Bradford and V. Sánchez of the USDA Forest Service for assistance in rearing beetles. Funding was provided by grants to KH from the USDA Northeastern Area, State and Private Forestry (10-CA-11420004-316), the Alphawood Foundation, and the Horticultural Research Institute.

References

  1. Allison JD, Borden JH, Seybold SJ (2004) A review of the chemical ecology of the Cerambycidae (Coleoptera). Chemoecology 14:123–150CrossRefGoogle Scholar
  2. Bancroft JS, Smith MT (2005) Dispersal and influences on movement for Anoplophora glabripennis calculated from individual mark-recapture. Ent Exp Appl 116:83–92CrossRefGoogle Scholar
  3. Bordereau C, Pasteels JM (2011) Pheromones and chemical ecology of dispersal and foraging in termites. In: Bignell YR DE, Lo N (eds) Biology of termites: a modern synthesis. Springer, Netherlands, pp 279–320Google Scholar
  4. Doolittle RE, Patrick DG, Heath RH (1993) Metal ammonia reduction of ethers of 3-decyn1-ol—effects of structure and conditions on cleavage and rearrangement. J Org Chem 58:5063–5066CrossRefGoogle Scholar
  5. Dunkelblum E, Tan SH, Silk PJ (1985) Double-bond location in monounsaturated fatty-acids by dimethyl disulfide derivatization and mass-spectrometry—application to analysis of fatty-acids in pheromone glands of 4 Lepidoptera. J Chem Ecol 11:265–277PubMedCrossRefGoogle Scholar
  6. Haack R, Herard F, Sun J, Turgeon J (2010) Managing invasive populations of Asian longhorned beetle and citrus longhonred beetle: a worldwide perspective. Annu Rev Entomol 55:521–546PubMedCrossRefGoogle Scholar
  7. Haverty MI, Collins MS, Nelson LJ, Thorne BL (1997) Cuticular hydrocarbons of termites of the British Virgin Islands. J Chem Ecol 23:927–964CrossRefGoogle Scholar
  8. Haverty MI, Woodrow RJ, Nelson LJ, Grace JK (2000) Cuticular hydrocarbons of termites of the Hawaiian Islands. J Chem Ecol 26:1167–1191CrossRefGoogle Scholar
  9. He P, Huang J (1993) Adult behavior of Anoplophora glabripennis (Coleoptera: Cerambycidae). Acta Entomologocal Sinica 36:51–55Google Scholar
  10. Hu JF, Angeli S, Schuetz S, Luo YQ, Hajek AE (2009) Ecology and management of exotic and endemic Asian longhorned beetle Anoplophora glabripennis. Agric For Entomol 11:359–375CrossRefGoogle Scholar
  11. Kapranas A, Lo Giudice D, Peri E, Millar JG, Colazza S (2013) Emergence, dispersal, and mate finding via a substrate-borne sex pheromone in the parasitoid Metaphycus luteolus. Entomol Exp Appl 148:74–83CrossRefGoogle Scholar
  12. Keena MA (2002) Anoplophora glabripennis (Coleoptera: Cerambycidae) fecundity and longevity under laboratory conditions: comparison of populations from New York and Illinois on Acer saccharum. Environ Entomol 31:490–498CrossRefGoogle Scholar
  13. Keena M (2005) Pourable artificial diet for rearing Anoplophora glabripennis (Coleoptera: Cerambycidae) and methods to optimize larval survival and synchronize development. Ann Ent Soc Am 90:536–547CrossRefGoogle Scholar
  14. Lacey ES, Ray AM, Hanks LM (2007) Calling behavior of the cerambycid beetle Neoclytus acuminatus acuminatus (F.). J Insect Behav 20:117–128CrossRefGoogle Scholar
  15. Li D, Liu Y (1997) Correlations between sexual development, age, maturation feeding, and mating of adult Anoplophora glabripennis (Motsch.) (Coleoptera: Cerambycidae). J Northwest For Coll 12:19–23Google Scholar
  16. Li D, Tokoro M, Nacashima T (1999) Mechanism of adult action and mating in Anoplophora glabripennis (Motsch.). J Beijing For Univ 21:33–36Google Scholar
  17. Li JG, Jin YJ, Luo YQ, Shen YB, Chen HJ (2002) Comparative analysis of volatile compounds from different host plants of Anoplophora glabripennis (Motsch.). J Beijing For Univ 24:165–169 [In Chinese]Google Scholar
  18. Linley JR, Carlson DA (1978) Contact mating pheromone in biting midge, Culicoides melleus. J Insect Physiol 24:423–427CrossRefGoogle Scholar
  19. MacLeod A, Evans HF, Baker RHA (2002) An analysis of pest risk from an Asian longhorn beetle (Anoplophora glabripennis) to hardwood trees in the European community. Crop Prot 21:635–645CrossRefGoogle Scholar
  20. Maercher A (1965) The Wittig Reaction. In: Cope AC (ed) Organic reactions, vol 14. Wiley, New York, pp 270–490Google Scholar
  21. Morewood WD, Neiner PR, McNeil JR, Sellmer JC, Hoover K (2003) Oviposition preference and larval performance of Anoplophora glabripennis (Coleoptera: Cerambycidae) in four Eastern North American hardwood tree Species. Environ Entomol 32:1028–1034CrossRefGoogle Scholar
  22. Morewood WD, Neiner PR, Sellmer JC, Hoover K (2004) Behavior of adult Anoplophora glabripennis on different tree species under greenhouse conditions. J Insect Behav 17:215–226CrossRefGoogle Scholar
  23. Morgan ED (2009) Trail pheromones of ants. Physiol Entomol 34:1–17CrossRefGoogle Scholar
  24. Mullen SP, Millar JG, Schal C, Shaw KL (2008) Identification and characterization of cuticular hydrocarbons from a rapid species radiation of Hawaiian swordtailed crickets (Gryllidae : Trigonidiinae : Laupala). J Chem Ecol 34:198–204PubMedCrossRefGoogle Scholar
  25. Nehme ME, Keena MA, Zhang A, Baker TC, Xu Z, Hoover K (2010) Evaluating the use of male-produced pheromone components and plant volatiles in two trap designs to monitor Anoplophora glabripennis. Environ Entomol 39:169–176PubMedCrossRefGoogle Scholar
  26. Ng TPT, Davies MS, Stafford R, Williams GA (2011) Mucus trail following as a mate-searching strategy in mangrove littorinid snails. Anim Behav 82:459–465CrossRefGoogle Scholar
  27. Oliver JE, Doss RP, Williamson RT, Carney JR, DeVilbiss ED (2000) Bruchins-mitogenic 3-(hydroxypropanoyl) esters of long chain diols from weevils of the Bruchidae. Tetrahedron 56:7633–7641CrossRefGoogle Scholar
  28. Peterson MA, Dobler S, Larson EL, Juarez D, Schlarbaum T, Monsen KJ, Francke W (2007) Profiles of cuticular hydrocarbons mediate male mate choice and sexual isolation between hybridising Chrysochus (Coleoptera : Chrysomelidae). Chemoecology 17:87–96CrossRefGoogle Scholar
  29. R Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
  30. Sanchez V, Keena MA (2013) Development of the teneral adult Anoplophora glabripennis (Coleoptera: Cerambycidae): time to initiate and completely bore out of maple wood. Environ Entomol 42:1–6PubMedCrossRefGoogle Scholar
  31. Saran RK, Millar JG, Rust MK (2007) Role of (3Z,6Z,8E)-dodecatrien-1-ol in trail following, feeding, and mating behavior of Reticulitermes hesperus. J Chem Ecol 33:369–389PubMedCrossRefGoogle Scholar
  32. Shine R, Langkilde T, Wall M, Mason RT (2005) Alternative male mating tactics in garter snakes, Thamnophis sirtalis parietalis. Animal Behav 70:387–396CrossRefGoogle Scholar
  33. Sillam-Dusses D, Hanus R, Abd El-Latif AO, Jiros P, Krasulova J, Kalinova B, Valterova I, Sobotnik J (2011) Sex Pheromone and Trail Pheromone of the Sand Termite Psammotermes hybostoma. J Chem Ecol 37:179–188PubMedCrossRefGoogle Scholar
  34. Smith MT, Bancroft J, Tropp J (2002) Age-specific fecundity of Anoplophora glabripennis (Coleoptera: Cerambycidae) on three tree species infested in the United States. Environ Entomol 31:76–83CrossRefGoogle Scholar
  35. Smith MT, Tobin PC, Bancroft J, Li GH, Gao RT (2004) Dispersal and spatiotemporal dynamics of Asian longhorned beetle (Coleoptera : Cerambycidae) in China. Environ Entomol 33:435–442CrossRefGoogle Scholar
  36. Wang Q, Zeng WY, Chen LY, Li JS, Yin XM (2002) Circadian reproductive rhythms, pair-bonding, and evidence for sex-specific pheromones in Nadezhdiella cantori (Coleoptera : Cerambycidae). J Insect Behav 15:527–539CrossRefGoogle Scholar
  37. Wen JB, Luo YQ, Yue JM, Liu RG (1999) The attracting effect of Acer negundo Linn. on Anoplophora glabripennis (Motsch.) adults. For Pest Dis 18:17–20 [In Chinese]Google Scholar
  38. Williams DW, Li GH, Gao RT (2004) Tracking movements of individual Anoplophora glabripennis (Coleoptera : Cerambycidae) adults: Application of harmonic radar. Environ Entomol 33:644–649CrossRefGoogle Scholar
  39. Yasui H, Yasuda T, Fukaya M, Akino T, Wakamura S, Hirai Y, Kawasaki K, Ono H, Narahara M, Kousa K, Fukuda T (2007) Host plant chemicals serve intraspecific communication in the white-spotted longicorn beetle, Anoplophora malasiaca (Thomson) (Coleoptera : Cerambycidae). Appl Entomol Zool 42:255–268CrossRefGoogle Scholar
  40. Yen J, Sehn JK, Catton K, Kramer A, Sarnelle O (2011) Pheromone trail following in three dimensions by the freshwater copepod Hesperodiaptomus shoshone. J Plankton Res 33:907–916CrossRefGoogle Scholar
  41. Zhang A, Facundo HT, Robbins PS, Linn CE, Hanula JL, Villani MG, Roelofs WL (1994) Identification and synthesis of female sex-pheromone of oriental beetle, Anomala-orientalis (Coleoptera, Scarabaeidae). J Chem Ecol 20:2415–2427PubMedCrossRefGoogle Scholar
  42. Zhang A, Oliver JE, Aldrich JR, Wang BD, Mastro VC (2002) Stimulatory beetle volatiles for the Asian longhorned beetle, Anoplophora glabripennis (Motschulsky). Z Naturforsch C 57:553–558Google Scholar
  43. Zhang A, Oliver JE, Chauhan K, Zhao BG, Xia LQ, Xu ZC (2003) Evidence for contact sex recognition pheromone of the Asian longhorned beetle, Anoplophora glabripennis (Coleoptera : Cerambycidae). Naturwissenschaften 90:410–413PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2014

Authors and Affiliations

  • Kelli Hoover
    • 1
  • Melody Keena
    • 2
  • Maya Nehme
    • 1
  • Shifa Wang
    • 3
  • Peter Meng
    • 1
  • Aijun Zhang
    • 4
  1. 1.Department of Entomology and Center for Chemical EcologyPenn State UniversityUniversity ParkUSA
  2. 2.USDA Forest Service, Northern Research StationHamdenUSA
  3. 3.College of Chemical EngineeringNanjing Forestry UniversityNanjingPeople’s Republic of China
  4. 4.USDA, ARS Invasive Insect Biocontrol and Behavior LaboratoryBeltsville Agricultural Research Center-WestBeltsvilleUSA

Personalised recommendations