Journal of Chemical Ecology

, Volume 40, Issue 2, pp 159–168 | Cite as

High Chemical Diversity in a Wasp Pheromone: a Blend of Methyl 6-Methylsalicylate, Fatty Alcohol Acetates and Cuticular Hydrocarbons Releases Courtship Behavior in the Drosophila Parasitoid Asobara tabida

  • Johannes Stökl
  • Anna-Teresa Dandekar
  • Joachim Ruther


Wasps of genus Asobara, a larval parasitoid of Drosophila, have become model organisms for the study of host-parasite interactions. However, little is known about the role of pheromones in locating mates and courtship behavior in this genus. In the present study, we aimed to identify the female courtship pheromone in Asobara tabida. The chemical compositions of solvent extracts from male and female wasps were analyzed by GC/MS. These extracts, fractions thereof, and synthetic pheromone candidates were tested for their activity in behavioral bioassays. The results demonstrate that the courtship pheromone of A. tabida is characterized by a remarkable chemical diversity. A multi-component blend of female-specific compounds including methyl 6-methylsalicylate (M6M), fatty alcohol acetates (FAAs), and cuticular hydrocarbons (CHCs) released male courtship behavior. Using a combinatory approach that included both purified natural products and synthetic analogs, it was shown that none of the three chemical classes alone was sufficient to release a full behavioral response in males. However, a blend of M6M and FAAs or combinations of one or both of these with female-derived CHCs resulted in wing-fanning responses by males comparable to those elicited by the crude extract of females. Thus, components from all three chemical classes contribute to the bioactivity of the pheromone, but none of the elements plays a key role or is irreplaceable. The fact that one of the FAAs, vaccenyl acetate, is also used as a kairomone by Asobara females to locate Drosophila hosts suggests that a pre-existing sensory responsiveness to vaccenyl acetate might have been involved in the evolution of the female sex pheromone in Asobara.


Asobara tabida Parasitoid wasp Sex pheromone Methyl 6-methylsalicylate Fatty alcohol acetate Cuticular hydrocarbons Sensory exploitation 



We thank Thomas Hoffmeister, University of Bremen, for sending us a starter culture of A. tabida, Michael Brummer for rearing the insects, and Tomer Czaczkes for comments on an earlier version of the manuscript. This study was funded by the German Research Council (Deutsche Forschungsgemeinschaft, DFG; grant STO 966/1-1 to J.S.).

Supplementary material

10886_2014_378_MOESM1_ESM.pdf (139 kb)
ESM 1 (PDF 138 kb)


  1. Aguiar AP, Deans AR, Engel MS, Forshage M, Huber JT, Jennings JT, Johnson NF, Lelej AS, Longino JT, Lohrmann V, Mikó I, Ohl M, Rasmussen C, Taeger A, Yu DSK (2013) Order Hymenoptera. In: Zhang Z (ed) Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness (Addenda 2013)., pp 51–62Google Scholar
  2. Baker J, Howard R, Morrill W, Meers S, Weaver D (2005) Acetate esters of saturated and unsaturated alcohols (C12–C20) are major components in Dufour glands of Bracon cephi and Bracon lissogaster (Hymenoptera: Braconidae), parasitoids of the wheat stem sawfly, Cephus cinctus (Hymenoptera: Cephidae). Biochem Syst Ecol 33:757–769. doi: 10.1016/j.bse.2004.12.025 CrossRefGoogle Scholar
  3. Bartelt RJ, Schaner AM, Jackson LL (1985) cis-Vaccenyl acetate as an aggregation pheromone in Drosophila melanogaster. J Chem Ecol 11:1747–1756. doi: 10.1007/BF01012124 CrossRefPubMedGoogle Scholar
  4. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B 57:289–300Google Scholar
  5. Blum MS (1996) Semiochemical parsimony in the Arthropoda. Annu Rev Entomol 41:353–374. doi: 10.1146/annurev.en.41.010196.002033 CrossRefPubMedGoogle Scholar
  6. Carlson DA, Roan CS, Yost RA, Hector J (1989) Dimethyl disulfide derivatives of long chain alkenes, alkadienes, and alkatrienes for gas chromatography/mass spectrometry. Anal Chem 61:1564–1571. doi: 10.1021/ac00189a019 CrossRefGoogle Scholar
  7. Carlson DA, Bernier UR, Sutton BD (1998) Elution patterns from capillary GC for methyl-branched alkanes. J Chem Ecol 24:1845–1865. doi: 10.1023/A:1022311701355 CrossRefGoogle Scholar
  8. Carton Y, Boulétreau M, van Alphen JJM, van Lenteren JC (1986) The Drosophila parasitic wasps. In: Ashburner M, Carson HL, Thompson JN (eds) The genetics and biology of Drosophila. Academic Press, OrlandoGoogle Scholar
  9. Cônsoli FL, Williams HJ, Vinson SB, Matthews RW, Cooperband MF (2002) trans-Bergamotenes—male pheromone of the ectoparasitoid Melittobia digitata. J Chem Ecol 28:1675–1689. doi: 10.1023/A:1019940932605 CrossRefGoogle Scholar
  10. DeLury NC, Gries G, Gries R, Judd GJR, Brown JJ (1999) Sex pheromone of Ascogaster quadridentata, a parasitoid of Cydia pomonella. J Chem Ecol 25:2229–2245. doi: 10.1023/A:1020813621977 CrossRefGoogle Scholar
  11. Duffield RM, Blum MS (1975) Methyl 6-methyl salicylate: identification and function in a Ponerine ant (Gnamptogenys pleurodon). Experientia 31:466–466. doi: 10.1007/BF02026382 CrossRefPubMedGoogle Scholar
  12. Dufour CM, Louâpre P, van Baaren J, Martel V (2012) When parasitoid males make decisions: information used when foraging for females. PLoS ONE 7:e46706. doi: 10.1371/journal.pone.0046706 PubMedCentralCrossRefPubMedGoogle Scholar
  13. El-Sayed AM (2013) The Pherobase: database of pheromones and semiochemicals. (
  14. Endler JA, Basolo AL (1998) Sensory ecology, receiver biases and sexual selection. Trends Ecol Evol 13:415–420. doi: 10.1016/S0169-5347(98)01471-2 CrossRefPubMedGoogle Scholar
  15. Gnanasunderam C, Young H, Benn MH (1984) Defensive secretions of New Zealand Tenebrionids—III: the identification of methyl esters of 6-methyl and 6-ethylsalicylic acid in Chrysopeplus expolitus (Coleoptera: Tenebrionidae). Insect Biochem 14:159–161. doi: 10.1016/0020-1790(84)90024-6 CrossRefGoogle Scholar
  16. Godfray HCJ (1994) Parasitoids: Behavioral and evolutionary ecology. Princeton University Press, ChichesterGoogle Scholar
  17. Greenberg L, Aliabadi A, McElfresh JS, Topoff H, Millar JG (2004) Sex pheromone of queens of the slave-making ant, Polyergus breviceps. J Chem Ecol 30:1297–1303. doi: 10.1023/B:JOEC.0000030300.11787.01 CrossRefPubMedGoogle Scholar
  18. Greenberg L, Tröger A, Francke W, McElfresh JS, Topoff H, Aliabadi A, Millar JG (2007) Queen sex pheromone of the slave-making ant, Polyergus breviceps. J Chem Ecol 33:935–945. doi: 10.1007/s10886-007-9269-2 CrossRefPubMedGoogle Scholar
  19. Hedlund K, Bartelt RJ, Dicke M, Vet LEM (1996a) Aggregation pheromones of Drosophila immigrans, D. phalerata and D. subobscura. J Chem Ecol 22:1835–1844. doi: 10.1007/BF02028507 CrossRefPubMedGoogle Scholar
  20. Hedlund K, Vet LEM, Dicke M (1996b) Generalist and specialist parasitoid strategies of using odours of adult Drosophilid flies when searching for larval hosts. Oikos 77:390–398CrossRefGoogle Scholar
  21. Höfle G, Steglich W, Vorbrüggen H (1978) 4-Dialkylaminopyridines as highly active acylation catalysts. Angew Chem Int Ed 17:569–583. doi: 10.1002/anie.197805691 CrossRefGoogle Scholar
  22. Janssen A (1989) Optimal host selection by Drosophila parasitoids in the field. Funct Ecol 3:469–479CrossRefGoogle Scholar
  23. Kühbandner S, Sperling S, Mori K, Ruther J (2012) Deciphering the signature of cuticular lipids with contact sex pheromone function in a parasitic wasp. J Exp Biol 215:2471–2478. doi: 10.1242/jeb.071217 CrossRefPubMedGoogle Scholar
  24. Kühbandner S, Bello JE, Mori K, Millar JG, Ruther J (2013) Elucidating structure-bioactivity relationships of methyl-branched alkanes in the contact sex pheromone of the parasitic wasp Lariophagus distinguendus. Insects 4:743–760. doi:  10.3390/insects4040743 Google Scholar
  25. Moore BP, Brown WV (1979) Chemical composition of the defensive secretion in Dyschirius bonelli (Coleoptera: Carabidae: Scarittnae) and its taxonomic significance. Aust J Entomol 18:123–125. doi: 10.1111/j.1440-6055.1979.tb00823.x CrossRefGoogle Scholar
  26. Morgan DE (2009) Trail pheromones of ants. Physiol Entomol 34:1–17. doi: 10.1111/j.1365-3032.2008.00658.x CrossRefGoogle Scholar
  27. Mowles SL, King BH, Linforth RST, Hardy ICW (2013) A female-emitted pheromone component is associated with reduced male courtship in the parasitoid wasp Spalangia endius. PLoS ONE 8:e82010 EP -. doi: 10.1371/journal.pone.0082010 CrossRefGoogle Scholar
  28. Nichols W, Cossé A, Bartelt R, King B (2010) Methyl 6-methylsalicylate: a female-produced pheromone component of the parasitoid wasp Spalangia endius. J Chem Ecol 36:1140–1147. doi: 10.1007/s10886-010-9855-6 CrossRefPubMedGoogle Scholar
  29. Niehuis O, Buellesbach J, Gibson JD, Pothmann D, Hanner C, Mutti NS, Judson AK, Gadau J, Ruther J, Schmitt T (2013) Behavioural and genetic analyses of Nasonia shed light on the evolution of sex pheromones. Nature 494:345–348. doi: 10.1038/nature11838 CrossRefPubMedGoogle Scholar
  30. Prevost G (2009) Advances in parasitology Vol. 70—Parasitoids of Drosophila. Academic Press, LondonGoogle Scholar
  31. Prince GJ (1976) Laboratory biology of Phaenocarpa persimilis Papp (Braconidae: Alysiinae) a parasitoid of Drosophila. Aust J Zool 24:249–264. doi: 10.1071/zo9760249 CrossRefGoogle Scholar
  32. Quicke DLJ (1997) Parasitic wasps. Chapman and Hall, LondonGoogle Scholar
  33. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  34. Ruther J (2013) Novel insights into pheromone-mediated communication in parasitic Hymenopterans. In: Wajnberg E, Colazza S (eds) Chemical ecology of insect parasitoids. Wiley-Blackwell, Hoboken, pp 112–144CrossRefGoogle Scholar
  35. Ruther J, Stahl LM, Steiner S, Garbe LA, Tolasch T (2007) A male sex pheromone in a parasitic wasp and control of the behavioral response by the female’s mating status. J Exp Biol 210:2163–2169. doi: 10.1242/jeb.02789 CrossRefPubMedGoogle Scholar
  36. Ruther J, Steiner S, Garbe L (2008) 4-Methylquinazoline is a minor component of the male sex pheromone in Nasonia vitripennis. J Chem Ecol 34:99–102. doi: 10.1007/s10886-007-9411-1 CrossRefPubMedGoogle Scholar
  37. Ruther J, Döring M, Steiner S (2011) Cuticular hydrocarbons as contact sex pheromone in the parasitoid Dibrachys cavus. Entomol Exp Appl 140:59–68. doi: 10.1111/j.1570-7458.2011.01129.x CrossRefGoogle Scholar
  38. Salerno G, Iacovone A, Carlin S, Frati F, Conti E, Anfora G (2012) Identification of sex pheromone components in Trissolcus brochymenae females. J Insect Physiol 58:1635–1642. doi: 10.1016/j.jinsphys.2012.10.003 CrossRefPubMedGoogle Scholar
  39. Schaner AM, Benner AM, Leu RD, Jackson LL (1989) Aggregation pheromone of Drosophila mauritiana, Drosophila yakuba, and Drosophila rajasekari. J Chem Ecol 15:1249–1257. doi: 10.1007/BF01014827 CrossRefPubMedGoogle Scholar
  40. Steiger S, Schmitt T, Schaefer HM (2011) The origin and dynamic evolution of chemical information transfer. Proc R Soc Lond B 278:970–979. doi: 10.1098/rspb.2010.2285 CrossRefGoogle Scholar
  41. Steiner S, Hermann N, Ruther J (2006) Characterization of a female-produced courtship pheromone in the parasitoid Nasonia vitripennis. J Chem Ecol 32:1687–1702. doi: 10.1007/s10886-006-9102-3 CrossRefPubMedGoogle Scholar
  42. Sullivan BT (2002) Evidence for a sex pheromone in bark beetle parasitoid Roptrocerus xylophagorum. J Chem Ecol 28:1045–1063. doi: 10.1023/A:1015270003717 CrossRefPubMedGoogle Scholar
  43. van Alphen JJM, Janssen ARM (1982) Host selection by Asobara tabida Nees (Braconidae; Alysiinae) a larval parasitoid of fruit inhabiting Drosophila species. Neth J Zool 32:194–214. doi: 10.1163/002829682X00139 CrossRefGoogle Scholar
  44. Weiss I, Rössler T, Hofferberth J, Brummer M, Ruther J, Stökl J (2013) A nonspecific defensive compound evolves into a competition-avoidance cue and a female sex-pheromone. Nat Commun 4:2767. doi: 10.1038/ncomms3767 PubMedCentralCrossRefPubMedGoogle Scholar
  45. Werren JH, Richards S, Desjardins CA, Niehuis O, Gadau J, Colbourne JK, The Nasonia Genome Working Group (2010) Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science 327:343–348. doi: 10.1126/science.1178028 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Johannes Stökl
    • 1
  • Anna-Teresa Dandekar
    • 1
  • Joachim Ruther
    • 1
  1. 1.Institute of ZoologyUniversity of RegensburgRegensburgGermany

Personalised recommendations