Journal of Chemical Ecology

, Volume 39, Issue 11–12, pp 1400–1406 | Cite as

Dietary Alkaloid Sequestration in a Poison Frog: An Experimental Test of Alkaloid Uptake in Melanophryniscus stelzneri (Bufonidae)

  • Maggie M. Hantak
  • Taran Grant
  • Sherri Reinsch
  • Dale Mcginnity
  • Marjorie Loring
  • Naoki Toyooka
  • Ralph A. Saporito
Article

Abstract

Several lineages of brightly colored anurans independently evolved the ability to secrete alkaloid-containing defensive chemicals from granular glands in the skin. These species, collectively referred to as ‘poison frogs,’ form a polyphyletic assemblage that includes some species of Dendrobatidae, Mantellidae, Myobatrachidae, Bufonidae, and Eleutherodactylidae. The ability to sequester alkaloids from dietary arthropods has been demonstrated experimentally in most poison frog lineages but not in bufonid or eleutherodactylid poison frogs. As with other poison frogs, species of the genus Melanophryniscus (Bufonidae) consume large numbers of mites and ants, suggesting they might also sequester defensive alkaloids from dietary sources. To test this hypothesis, fruit flies dusted with alkaloid/nutritional supplement powder were fed to individual Melanophryniscus stelzneri in two experiments. In the first experiment, the alkaloids 5,8-disubstituted indolizidine 235B' and decahydroquinoline were administered to three individuals for 104 days. In the second experiment, the alkaloids 3,5-disubstituted indolizidine 239Q and decahydroquinoline were given to three frogs for 153 days. Control frogs were fed fruit flies dusted only with nutritional supplement. Gas chromatography/mass spectrometry analyses revealed that skin secretions of all experimental frogs contained alkaloids, whereas those of all control frogs lacked alkaloids. Uptake of decahydroquinoline was greater than uptake of 5,8-disubstituted indolizidine, and uptake of 3,5-disubstituted indolizidine was greater than uptake of decahydroquinoline, suggesting greater uptake efficiency of certain alkaloids. Frogs in the second experiment accumulated a greater amount of alkaloid, which corresponds to the longer duration and greater number of alkaloid-dusted fruit flies that were consumed. These findings provide the first experimental evidence that bufonid poison frogs sequester alkaloid-based defenses from dietary sources.

Keywords

Arthropods Anura Chemical defense Diet Feeding experiment 

References

  1. Berenbaum MR (1995) The chemistry of defense: theory and practice. Proc Natl Acad Sci U S A 92:2–8PubMedCrossRefGoogle Scholar
  2. Bonansea MI, Vaira M (2007) Geographic variation of the diet of Melanophryniscus rubriventris (Anura: Bufonidae) in northwestern Argentina. J Herpetol 41:231–236CrossRefGoogle Scholar
  3. Brodie ED, Jr, Ducey PK, Baness EA (1991) Antipredator skin secretions of some tropical salamanders (Bolitoglossa) and toxic to snake predators. Biotropica 23:58–62CrossRefGoogle Scholar
  4. Conlon JM (2011) Structural diversity and species distribution of host-defense peptides in frog skin secretions. Cell Mol Life Sci 68:2303–2315PubMedCrossRefGoogle Scholar
  5. Daly JW, Myers CW, Warnick JE, Albuquerque EX (1980) Levels of batrachotoxin and lack of sensitivity to its action in poison-dart frogs (Phyllobates). Science 208:1383–1385PubMedCrossRefGoogle Scholar
  6. Daly JW, Highet RJ, Myers CW (1984) Occurrence of skin alkaloids in non-dendrobatid frogs from Brazil (Bufonidae), Australia (Myobatrachidae) and Madagascar (Mantellinae). Toxicon 22:905–919Google Scholar
  7. Daly JW, Garraffo HM, Spande TF, Jaramillo C, Rand AS (1994a) Dietary source for skin alkaloids of poison frogs (Dendrobatidae)? J Chem Ecol 20:943–955PubMedCrossRefGoogle Scholar
  8. Daly JW, Segunda SI, Garraffo HM, Spande TF, Wisnieski A, Cover JC Jr (1994b) An uptake system for dietary alkaloids in poison frogs (Dendrobatidae). Toxicon 32:657–663PubMedCrossRefGoogle Scholar
  9. Daly JW, Garraffo HM, Hall GSE, Cover JF Jr (1997) Absence of skin alkaloids in captive-raised Madagascan Mantelline frogs (Mantella) and sequestration of dietary alkaloids. Toxicon 35:1131–1135PubMedCrossRefGoogle Scholar
  10. Daly JW, Garraffo HM, Spande TF (1999) Alkaloids from amphibian skins. In: Pelletier SW (ed) Alkaloids: chemical and biological perspectives, vol 13. Pergamon, New York, pp 1–161Google Scholar
  11. Daly JW, Garraffo HM, Spande TF, Clark VC, Ma J, Ziffer H, Cover JF Jr (2003) Evidence for an enantioselective pumiliotoxin 7-hydroxylase in dendrobatid poison frogs of the genus Dendrobates. Proc Natl Acad Sci U S A 100:11092–11097PubMedCrossRefGoogle Scholar
  12. Daly JW, Spande TF, Garraffo HM (2005) Alkaloids from amphibian skin: A tabulation of over eight-hundred compounds. J Nat Prod 68:1556–1575PubMedCrossRefGoogle Scholar
  13. Daly JW, Wilham JM, Spande TF, Garraffo HM, Gil R, Silva G, Vaira M (2007) Alkaloids in bufonid toads (Melanophryniscus): Temporal and geographic determinants fro two Argentinian species. J Chem Ecol 33:871–887PubMedCrossRefGoogle Scholar
  14. Daly JW, Garraffo HM, Spande TF, Yeh HJC, Peltzer PM, Cacivio PM, Baldo JD, Faivovich J (2008) Indolizidine 239Q and quinolizidine 275I. Major alkaloids in two Argentinian bufonid toads (Melanophryniscus). Toxicon 52:858–870PubMedCrossRefGoogle Scholar
  15. Fernández K (1926) Sobre la biología y reproducción de algunos batracios argentines (segunda parte). Bol Acad Nac Cienc Córdoba 29:271–320Google Scholar
  16. Garraffo HM, Spande TF, Daly JW (1993) Alkaloids from bufonid toads (Melanophryniscus): Decahydroquinolines, pumiliotoxins and homopumiliotoxins, indolizidines, pyrrolizidines, and quinolizidines. J Nat Prod 56:357–373PubMedCrossRefGoogle Scholar
  17. Garraffo HM, Andriamaharavo NR, Vaira M, Quiroga MF, Heit C, Spande TF (2012) Alkaloids from single skins of the Argentinian toad Melanophryniscus rubriventris (Anura, Bufonidae): An unexpected variability in alkaloid profiles and a profusion of new structures. SpringerPlus 1:51PubMedCrossRefGoogle Scholar
  18. Grant T (2004) On the identities of Colostethus inguinalis (Cope, 1868) and C. panamensis (Dunn, 1933), with comments on C. latinasus (Cope, 1863) (Anura: Dendrobatidae). Am Mus Novit 3444:1–24CrossRefGoogle Scholar
  19. Grant JB, Land B (2002) Transcutaneous amphibian stimulator (TAS): Device for the collection of amphibian secretions. Herpetol Rev 33:38–41Google Scholar
  20. Grant T, Frost DR, Caldwell JP, Gagliardo R, Haddad CFB, Kok PJR, Means DB, Noonan BP, Schargel WE, Wheeler WC (2006) Phylogenetic systematics of dart-poison frogs and their relatives (Amphibia: Athesphatanura: Dendrobatidae). Bull Amer Mus Nat Hist 299:1–262CrossRefGoogle Scholar
  21. Grant T, Colombo P, Verrastro L, Saporito RA (2012) The occurrence of defensive alkaloids in non-integumentary tissues of the Brazilian red-belly toad Melanophryniscus simplex (Bufonidae). Chemoecology 22:169–178CrossRefGoogle Scholar
  22. Jones TH, Gorman JST, Snelling RR, Delabie JHC, Blum MS, Garraffo HM, Jain P, Daly JW, Spande TF (1999) Further alkaloids common to ants and frogs: decahydroquinolines and quinolizidine. J Chem Ecol 25:1179–1193CrossRefGoogle Scholar
  23. Macfoy C, Danosus D, Sandit R, Jones TH, Spande TF, Garraffo HM, Daly JW (2005) Alkaloids of anuran skin: Antimicrobial function? Z Naturforsch 60c:932–937Google Scholar
  24. Mebs D, Pogoda W, Maneyro R, Kwet A (2005) Studies on the poisonous skin secretion of individual red bellied toads, Melanophryniscus montevidensis (Anura, Bufonidae), from Uruguay. Toxicon 46:641–650PubMedCrossRefGoogle Scholar
  25. Mebs D, Maneyro R, Pogoda W (2007) Further studies on pumiliotoxin 251D and hydroquinone content of the skin secretion of Melanophryniscus species (Anura, Bufonidae) from Uruguay. Toxicon 50:166–169PubMedCrossRefGoogle Scholar
  26. Peloso PLV, Faivovich J, Grant T, Gasparini JL, Haddad CFB (2012) An extraordinary new species of Melanophryniscus (Anuna, Bufonidae) from southeastern Brazil. Am Mus Novit 3762:1–31CrossRefGoogle Scholar
  27. Pukala TL, Bowie JH, Maselli VM, Musgrave IF, Tyler MJ (2006) Host-defense peptides from the glandular secretions of amphibians: structure and activity. Nat Prod Rep 23:368–393PubMedCrossRefGoogle Scholar
  28. Quiroga MF, Bonansea MI, Vaira M (2011) Population diet variation and individual specialization in the poison toad, Melanophryniscus rubriventris (Vellard 1947. Amphibia-Reptilia 32:261–265CrossRefGoogle Scholar
  29. Raspotnig G, Norton RA, Heethoff M (2011) Oribatid mites and skin alkaloids in poison frogs. Biol Lett. 7:555–556 Google Scholar
  30. Riemer WJ (1958) Variation and systematic relationships within the salamander genus Taricha. Univ Calif Publ Zool 56:301–390Google Scholar
  31. Rivas L, Luque-Ortega JR, Andreu D (2009) Amphibian antimicrobial peptides and protozoa: lessons from parasites. Biochim Biophys Acta 1788:1570–1580PubMedCrossRefGoogle Scholar
  32. Rodríguez A, Poth D, Schulz S, Vences M (2011) Discovery of skin alkaloids in a miniaturized eleutherodactylid frog from Cuba. Biol Lett 7:414–418PubMedCrossRefGoogle Scholar
  33. Rodríguez A, Alonso R, Rodríguez JA, Vences M (2012) Geographic distribution, colour variation and molecular diversity of miniature frogs of the Eleutherodactylus limbatus group from Cuba. Salamandra 48:71–91Google Scholar
  34. Santos RR, Grant T (2011) Diel patterns of migration in a poisonous toad from Brazil and the evolution of chemical defenses in diurnal amphibians. Evol Ecol 25:249–258CrossRefGoogle Scholar
  35. Saporito RA, Donnelly MA, Norton RA, Garraffo HM, Spande TF, Daly JW (2007) Oribatid mites as a major dietary source for alkaloids in poison frogs. Proc Natl Acad Sci U S A 104:8885–8890PubMedCrossRefGoogle Scholar
  36. Saporito RA, Spande TF, Garraffo HM, Donnelly MA (2009) Arthropod alkaloids in poison frogs: a review of the dietary hypothesis. Heterocycles 79:277–297CrossRefGoogle Scholar
  37. Saporito RA, Norton RA, Andriamaharavo NR, Garraffo HM, Spande TF (2011) Alkaloids in the mite Scheloribates laevigatus: Further alkaloids common to oribatid mites and poison frogs. J Chem Ecol 37:213–218PubMedCrossRefGoogle Scholar
  38. Saporito RA, Donnelly MA, Spande TF, Garraffo HM (2012) A review of chemical ecology in poison frogs. Chemoecology 22:159–168CrossRefGoogle Scholar
  39. Smith BP, Tyler MJ, Kaneko T, Garraffo HM, Spande TF, Daly JW (2002) Evidence for biosynthesis of pseudophrynamine alkaloids by an Australian myobatrachid frog (Pseudophryne) and for sequestration of dietary pumiliotoxins. J Nat Prod 65:439–447PubMedCrossRefGoogle Scholar
  40. Stebbins RC (1951) Amphibians of Western North America. UC Press, Berkeley, 539Google Scholar
  41. Toledo RC, Jared C (1995) Cutaneous granular glands and amphibian venoms. Comp Biochem Physiol 111A:1–29CrossRefGoogle Scholar
  42. Wang S-Y, Wang GK (1999) Batrachotoxin-resistant Na+ channels derived from point mutations in transmembrane segment D4-S6. Biophys J 76:3141–3149PubMedCrossRefGoogle Scholar
  43. Wang S-Y, Mitchell J, Tikhonov DB, Zhorov BS, Wang GK (2006) How batrachotoxin modifies the sodium channel permeation pathway: computer modeling and site-directed mutagenesis. Mol Pharmacol 69:788–795PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Maggie M. Hantak
    • 1
  • Taran Grant
    • 2
  • Sherri Reinsch
    • 3
  • Dale Mcginnity
    • 3
  • Marjorie Loring
    • 4
  • Naoki Toyooka
    • 5
    • 6
  • Ralph A. Saporito
    • 1
  1. 1.Department of BiologyJohn Carroll UniversityUniversity HeightsUSA
  2. 2.Departamento de Zoologia, Instituto de Biociências, Universidade de São PauloSão PauloBrazil
  3. 3.Nashville ZooNashvilleUSA
  4. 4.Barry UniversityMiami ShoresUSA
  5. 5.Graduate School of Science and Technology for ResearchUniversity of ToyamaToyamaJapan
  6. 6.Graduate School of Innovative Life ScienceUniversity of ToyamaToyamaJapan

Personalised recommendations