Journal of Chemical Ecology

, Volume 39, Issue 7, pp 869–878 | Cite as

Ecological and Mechanistic Insights Into the Direct and Indirect Antimicrobial Properties of Bacillus subtilis Lipopeptides on Plant Pathogens

  • J. Falardeau
  • C. Wise
  • L. Novitsky
  • T. J. AvisEmail author
Review Article


Members of the genus Bacillus produce a wide variety of antimicrobial compounds. Cyclic lipopeptides (CLP) produced by Bacillus subtilis strains have been shown to protect host plants from a numbers of pathogens. The representative families of these CLP (surfactins, fengycins, and iturins) share a polypeptide ring linked to a lipid tail of varying length. CLP provide plant protection through a variety of unique mechanisms. Members of the surfactin and fengycin families elicit induced systemic resistance in certain host plants, and they also function by directly affecting the biological membranes of bacterial and fungal pathogens, mainly resulting in membrane pore formation. Specific pore forming mechanisms differ between CLP families, causing differential activities. CLP also may aid in enhanced B. subtilis colonization of the plant environment in addition to potentially preventing the adhesion of competitive microorganisms. Several recent studies have highlighted the control of plant pathogens by CLP-producing B. subtilis strains. Strong ecological advantages through multifaceted activities of CLP provide these strains with immense promise in controlling pathogens in a variety of plant ecosystems.


Bacillus subtilis Biological membranes Fengycin Induced systemic resistance Iturin Lipopeptides Plant pathogens Surfactin 


  1. Ahimou F, Jacques P, Deleu M (2000) Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enzyme Microb Technol 27:749–754PubMedCrossRefGoogle Scholar
  2. Avis TJ (2007) Antifungal compounds that target fungal membranes: Applications in plant disease control. Can J Plant Pathol 29:323–329CrossRefGoogle Scholar
  3. Avis TJ, Bélanger RR (2001) Specificity and mode of action of the antifungal fatty acid cis-9-heptadecenoic acid produced by Pseudozyma flocculosa. Appl Environ Microbiol 67:956–960PubMedCrossRefGoogle Scholar
  4. Avis TJ, Gravel V, Antoun H, Tweddell RJ (2008) Multifacted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol Biochem 40:1733–1740CrossRefGoogle Scholar
  5. Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319PubMedCrossRefGoogle Scholar
  6. Bélanger RR, Avis TJ (2002) Ecological processes and interactions occurring in leaf surface fungi. In: Phyllosphere microbiology. Lindow SE, Hecht-Poinar EI, Elliot VJ (eds) APS Press, pp. 193–207Google Scholar
  7. Buchoux S, Lai-Kee-Him J, Garnier M, Tsan P, Besson F, Brisson A, Dufourc EJ (2008) Surfactin-triggered small vesicle formation of negatively charged membranes: A novel membrane-lysis mechanism. Biophys J 95:3840–3849PubMedCrossRefGoogle Scholar
  8. Cao Y, Xu Z, Ling N, Yuan Y, Yang X, Chen L, Shen B, Shen Q (2012) Isolation and identification of lipopeptides produced by B. subtilis SQR 9 for suppressing Fusarium wilt of cucumber. Sci Hortic-Amsterdam 135:32–39CrossRefGoogle Scholar
  9. Cazorla FM, Romero D, Pérez-García A, Lugtenberg BJJ, de Vincente A, Bloemberg G (2007) Isolation and characterization of antagonistic Bacillus subtilis strains from the avocado rhizoplane displaying biocontrol activity. J Appl Microbiol 103:1950–1959PubMedCrossRefGoogle Scholar
  10. Chan Y-K, Savard ME, Reid LM, Cyr T, Mccormick WA, Seguin C (2009) Identification of lipopeptide antibiotics of a Bacillus subtilis isolate and their control of Fusarium graminearum diseases in maize and wheat. BioControl 54:567–574CrossRefGoogle Scholar
  11. Cho S-J, Lee SK, Cha BJ, Kim YH, Shin K-S (2003) Detection and characterization of the Gloeosporium gloeosporioides growth inhibitory compound iturin A from Bacillus subtilis strain KS03. FEMS Microbiol Lett 223:47–51PubMedCrossRefGoogle Scholar
  12. Chooi Y-H, Tang Y (2010) Adding the lipo to lipopeptides: Do more with less. Chem Biol 17:872–880CrossRefGoogle Scholar
  13. Deleu M, Paquot M, Nylander T (2008) Effect of fengycin, a lipopeptide produced by Bacillus subtilis, on model membranes. Biophys J 94:2667–2679PubMedCrossRefGoogle Scholar
  14. Eeman M, Francius G, Dufrêne YF, Nott K, Paquot M, Deleu M (2009a) Effect of cholesterol and fatty acids on the molecular interactions of fengycin with Stratum corneum mimicking lipid monolayers. Langmuir 25:3029–3039PubMedCrossRefGoogle Scholar
  15. Eeman M, Pegado L, Dufrêne YF, Paquot M, Deleu M (2009b) Influence of environmental conditions on the interfacial organization of fengycin, a bioactive lipopeptide produced by Bacillus subtilis. J Colloid Interface Sci 329:253–264PubMedCrossRefGoogle Scholar
  16. Elkahoui S, Djébali N, Tabbene O, Hadjbrahim A, Mnasri B, Mhamdi R, Shaaban M, Limam F (2012) Evaluation of antifungal activity from Bacillus strains against Rhizoctonia solani. Afr J Biotechnol 11:4196–4201Google Scholar
  17. Etchegaray A, de Castro Bueno C, de Melo IS, Tsai SM, de Fátima Fiore M, Silva-Stenico ME, de Moraes LAB, Teschke O (2008) Effect of a highly concentrated lipopeptide extract of Bacillus subtilis on fungal and bacterial cells. Arch Microbiol 190:611–622PubMedCrossRefGoogle Scholar
  18. Fickers P, Guez J-S, Damblon C, Leclère V, Béchet M, Jacques P, Joris B (2009) High-level biosynthesis of the anteiso-C17 isoform of the antibiotic mycosubtilin in Bacillus subtilis and characterization of its candidacidal activity Appl. Environ Microbiol 75:4636–4640CrossRefGoogle Scholar
  19. Francius G, Dufour S, Deleu M, Paquot M, Mingeot-Leclercq M, Dufrêne YF (2008) Nanoscale membrane activity of surfactins: Influence of geometry, charge and hydrophobicity. Biochim Biophys Acta 1778:2058–2068PubMedCrossRefGoogle Scholar
  20. García-Gutiérrez L, Zeriouh H, Romero D, Cubero J, de Vincente A, Pérez-García A (2013) The antagonistic strain Bacillus subtilis UMAF6639 also confers protection to melon by activation of jasmonate- and salicylic acid-dependent responses. Microb Biotechnol 6:264–274PubMedCrossRefGoogle Scholar
  21. Hamdache A, Lamarti A, Aleu J, Collado IG (2011) Non-peptide metabolites from the genus Bacillus. J Nat Prod 74:893–899PubMedCrossRefGoogle Scholar
  22. Heerklotz H, Seelig J (2007) Leakage and lysis of lipid membranes induced by the lipopeptide surfactin. Eur Biophys J 36:305–314PubMedCrossRefGoogle Scholar
  23. Henry G, Deleu M, Jourdan E, Thonart P, Ongena M (2011) The bacterial lipopeptide surfactin targets the lipid fraction of the plant plasma membrane to trigger immune-related responses. Cell Microbiol 13:1824–1837PubMedCrossRefGoogle Scholar
  24. Hu LB, Shi ZQ, Zhang T, Yang ZM (2007) Fengycin antibiotics isolated from B-FS01 culture inhibit the growth of Fusarium moniliforme Sheldon ATCC38932. FEMS Microbiol Lett 272:91–98PubMedCrossRefGoogle Scholar
  25. Hu LB, Zhang T, Yang ZM, Zhou W, Shi ZQ (2009) Inhibition of fengycins on the production of fumonisin B1 from Fusarium verticillioides. Lett Appl Microbiol 48:84–89PubMedCrossRefGoogle Scholar
  26. Huang X, Wei Z, Zhao G, Gao X, Yang S, Cui Y (2008) Optimization of sterilization of Escherichia coli in milk by surfactin and fengycin using a response surface method. Curr Microbiol 56:376–381PubMedCrossRefGoogle Scholar
  27. Jourdan E, Henry G, Duby F, Dommes J, Barthélemy JP, Thonart P, Ongena M (2009) Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Mol Plant Microbe Interact 22:456–468PubMedCrossRefGoogle Scholar
  28. Kumar A, Johri BN (2009) Antimicrobial lipopeptides of Bacillus: natural weapons for biocontrol of plant pathogens. In: Satyanarayana T, Johri BN, Prakash A (eds) Microorganisms in sustainable agriculture and biotechnology. Springer Publishing Company, New York, pp 91–111Google Scholar
  29. Leclère V, Marti R, Béchet M, Fickers P, Jacques P (2006) The lipopeptides mycosubtilin and surfactin enhance spreading of Bacillus subtilis strains by their surface-active properties. Arch Microbiol 186:475–483PubMedCrossRefGoogle Scholar
  30. Li L, MA J, Li Y, Wang Z, Gao T, Wang Q (2012) Screening and partial characterization of Bacillus with potential applications in biocontrol of cucumber Fusarium wilt. Crop Prot 35:29–35CrossRefGoogle Scholar
  31. Liu J, Zou A, Mu B (2010) Surfactin effect on the physicochemical property of PC liposome. Colloids Surf A 361:90–95CrossRefGoogle Scholar
  32. Lopez D, Vlamakis H, Losick R, Kolter R (2009) Cannibalism enhances biofilm development in Bacillus subtilis. Mol Microbiol 74:609–618PubMedCrossRefGoogle Scholar
  33. Maget-Dana R, Peypoux F (1994) Iturins, a special class of pore-forming lipopeptides: Biological and physicochemical properties. Toxicology 87:151–174PubMedCrossRefGoogle Scholar
  34. McCormick SP (2013) Microbial detoxification of mycotoxins. J. Chem. Ecol., this volumeGoogle Scholar
  35. Mukherjee A, Das K (2005) Correlation between diverse cyclic lipopeptides production and regulation of growth and substrate utilization by Bacillus subtilis strains in a particular habitat. FEMS Microbiol Ecol 54:479–489PubMedCrossRefGoogle Scholar
  36. Moree WJ, Yang JY, Zhao X, Liu,W-T, Aparicio M, Atencio L, Ballesteros J, Sanchez J, Gavilan RG, Gutierrez M, Dorrestein PC (2013) Imaging mass spectrometry of a coral microbe interaction with fungi. J Chem Ecol., this volumeGoogle Scholar
  37. Nasir MN, Besson F (2011) Specific interactions of mycosubtilin with cholesterol-containing artificial membranes. Langmuir 27:10785–10792PubMedCrossRefGoogle Scholar
  38. Nasir MN, Besson F (2012) Interactions of the antifungal mycosubtilin with ergosterol-containing interfacial monolayers. Biochim Biophys Acta 1818:1302–1308PubMedCrossRefGoogle Scholar
  39. Nasir MN, Thawani A, Kouzayha A, Besson F (2010) Interactions of the natural antimicrobial mycosubtilin with phospholipid membrane models. Colloids Surf B 78:17–23CrossRefGoogle Scholar
  40. Ongena M, Jacques P (2008) Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125PubMedCrossRefGoogle Scholar
  41. Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny JL, Thonart P (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090Google Scholar
  42. Ongena M, Henry G, Thonart P (2009) The roles of cyclic lipopeptides in the biocontrol activity of Bacillus subtilis. In: Gisi U, Chet I, Gullino ML (eds) Recent developments in management of plant diseases, Vol. 1. Springer Publishing Company, New York, pp 59–69Google Scholar
  43. Patel H, Tscheka C, Edwards K, Karlsson G, Heerkotz H (2011) All-or-none membrane permeabilization by fengycin-type lipopeptides from Bacillus subtilis QST713. Biochim Biophys Acta 1808:2000–2008PubMedCrossRefGoogle Scholar
  44. Pérez-García A, Romero D, de Vincente A (2011) Plant protection and growth stimulation by microorganisms: Biotechnological applications of Bacilli in agriculture. Curr Opin Biotechnol 22:187–193PubMedCrossRefGoogle Scholar
  45. Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51:553–563PubMedCrossRefGoogle Scholar
  46. Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: More than surfactants and antibiotics. FEMS Microbiol Rev 34:1037–1062PubMedGoogle Scholar
  47. Razafindralambo H, Dufour S, Paquot M, Deleu M (2009) Thermodynamic studies of the binding interactions of surfactin analogues to lipid vesicles: Application of isothermal titration calorimetry. J Thermal Anal Calor 95:817–821CrossRefGoogle Scholar
  48. Rebib H, Hedi A, Rousset M, Boudabous A, Limam F, Sadfi-Zouaoui N (2012) Biological control of Fusarium foot rot of wheat using fengycin-producing Bacillus subtilis isolated from salty soil. Afr J Biotechnol 11:8464–8475Google Scholar
  49. Rivardo F, Turner RJ, Allgrone G, Ceri H, Martinotti MG (2009) Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens. Appl Microbiol Biotechnol 83:541–553PubMedCrossRefGoogle Scholar
  50. Romero D, de Vincente A, Rakotoaly RH, Dufour SE, Veening J-W, Arrebola E, Cazorla FM, Kuipers OP, Paquot M, Pérez-García A (2007) The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant Microbe Interact 20:430–440PubMedCrossRefGoogle Scholar
  51. Shen H, Thomas RK, Penfold J, Fragneto G (2010) Destruction and solubilization of supported phospholipid bilayers on silica by the biosurfactant surfactin. Langmuir 26:7334–7342PubMedCrossRefGoogle Scholar
  52. Tao Y, Bie X, Lv F, Zhao H, Lu Z (2011) Antifungal activity and mechanism of fengycin in the presence and absence of commercial surfactin against Rhizopus stolonifer. J Microbiol 49:146–150PubMedCrossRefGoogle Scholar
  53. Touré Y, Ongena M, Jacques P, Guiro A, Thonart P (2004) Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J Appl Microbiol 96:1151–1160PubMedCrossRefGoogle Scholar
  54. van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytophathol 44:135–162CrossRefGoogle Scholar
  55. Van Wees SCM, Van der Ent S, Pieterse CMJ (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448PubMedCrossRefGoogle Scholar
  56. Volpon L, Bessom F, Lancelin JM (1999) NMR structure of active and inactive forms of the sterol-dependent antifungal antibiotic bacillomycin L. Eur J Biochem 264:200–210PubMedCrossRefGoogle Scholar
  57. Wise C, Novitsky L, Tsopmo A, Avis TJ (2012) Production and antimicrobial activity of 3-hydroxypropionaldehyde from Bacillus subtilis strain CU12. J Chem Ecol 38:1521–1527PubMedCrossRefGoogle Scholar
  58. Yánez-Mendizábal V, Usall J, Viñas I, Casals C, Marín S, Solsona C, Teixidó N (2011) Potential of a new strain of Bacillus subtilis CPA-8 to control the major postharvest diseases of fruit. Biocontrol Sci Technol 21:409–426CrossRefGoogle Scholar
  59. Yánez-Mendizábal V, Zeriouh H, Viñas I, Torres R, Usall J, de Vincente A, Pérez-García A, Teixidó N (2012) Biological control of peach brown rod (Monilinia spp.) by Bacillus subtilis CPA-8 is based on production of fengycin-like lipopeptides. Eur J Plant Pathol 132:609–619CrossRefGoogle Scholar
  60. Zeriouh H, Romero D, García-Gutiérrez L, Cazorla FM, de Vincente A, Pérez-García A (2011) The iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases in cucurbits. Mol Plant Microbe Interact 24:1540–1552PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • J. Falardeau
    • 1
  • C. Wise
    • 1
  • L. Novitsky
    • 1
  • T. J. Avis
    • 1
    Email author
  1. 1.Department of ChemistryCarleton UniversityOttawaCanada

Personalised recommendations