Advertisement

Journal of Chemical Ecology

, Volume 39, Issue 7, pp 1036–1044 | Cite as

Priming of Anti-Herbivore Defense in Tomato by Arbuscular Mycorrhizal Fungus and Involvement of the Jasmonate Pathway

  • Yuan Yuan Song
  • Mao Ye
  • Chuan You Li
  • Rui Long Wang
  • Xiao Chen Wei
  • Shi Ming Luo
  • Ren Sen Zeng
Article

Abstract

Mycorrhizas play a vital role in soil fertility, plant nutrition, and resistance to environmental stresses. However, mycorrhizal effects on plant resistance to herbivorous insects and the related mechanisms are poorly understood. This study evaluated effects of root colonization of tomato (Solanum lycopersicum Mill.) by arbuscular mycorrhizal fungi (AMF) Glomus mosseae on plant defense responses against a chewing caterpillar Helicoverpa arimigera. Mycorrhizal inoculation negatively affected larval performance. Real time RT-PCR analyses showed that mycorrhizal inoculation itself did not induce transcripts of most genes tested. However, insect feeding on AMF pre-inoculated plants resulted in much stronger defense response induction of four defense-related genes LOXD, AOC, PI-I, and PI-II in the leaves of tomato plants relative to non-inoculated plants. Four tomato genotypes: a wild-type (WT) plant, a jasmonic acid (JA) biosynthesis mutant (spr2), a JA-signaling perception mutant (jai1), and a JA-overexpressing 35S::PS plant were used to determine the role of the JA pathway in AMF-primed defense. Insect feeding on mycorrhizal 35S::PS plants led to higher induction of defense-related genes relative to WT plants. However, insect feeding on mycorrhizal spr2 and jai1 mutant plants did not induce transcripts of these genes. Bioassays showed that mycorrhizal inoculation on spr2 and jai1 mutants did not change plant resistance against H. arimigera. These results indicates that mycorrhizal colonization could prime systemic defense responses in tomato upon herbivore attack, and that the JA pathway is involved in defense priming by AMF.

Keywords

Defense priming Arbuscular mycorrhizal fungus Induced defense Jasmonate pathway Tomato Glomus mosseae Helicoverpa arimigera 

Notes

Acknowledgments

This research was supported by the National 973 Program of China (2011CB100400), National Natural Science Foundation of China (31070388, 31028018, 31100286), Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (2010), Guangdong Natural Science Foundation of China (S2011040004336), China Postdoctoral Science Foundation (201104341, 20100480762), and Ph.D. Foundation of the Ministry of Education of China (20104404110004).

References

  1. Bethlenfalvay GJ, Schüepp H (1994) Arbuscular mycorrhizas and agrosystem stability. In: Gianinazzi S, Schüepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhäuser Verlag, Basel, pp 117–131CrossRefGoogle Scholar
  2. Browse J, Howe GA (2008) New weapons and a rapid response against insect attack. Plant Physiol 146:832–838PubMedCrossRefGoogle Scholar
  3. Cahill JF Jr, Elle E, Smith GR, Shore BH (2008) Disruption of a belowground mutualism alters interactions between plants and their floral visitors. Ecology 89:1791–1801PubMedCrossRefGoogle Scholar
  4. Chellappan P, Christy SAA, Mahadevan A (2002) Multiplication of arbuscular mycorrhizal fungi on roots. In: Mukerji KG, Manoharachary C, Chamola BP (eds) Techniques in mycorrhizal studies. Kluwer Academic Publishers, Dordrecht, pp 285–297CrossRefGoogle Scholar
  5. Christensen SA, Nemchenko A, Borrego E, Murray I, Sobhy IS, Bosak L, Deblasio S, Erb M, Robert CA, Vaughn KA, Herrfurth C, Tumlinson J, Feussner I, Jackson D, Turlings TC, Engelberth J, Nansen C, Meeley R, Kolomiets MV (2013) The maize lipoxygenase, ZmLOX10, mediates green leaf volatile, jasmonate and herbivore-induced plant volatile production for defense against insect attack. Plant J 74:59–73PubMedCrossRefGoogle Scholar
  6. Conrath U, Beckers GJM, Flors V, Garcia-Agustin P, Jakab G, Mauch F, Newman MA, Pieterse CMJ, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mauch-Mani B (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19:1062–1071PubMedCrossRefGoogle Scholar
  7. de Vos M, van Oosten VR, van Poecke RMP, van Pelt JA, Pozo MJ, Mueller MJ, Buchala AJ, Métraux JP, van Loon LC, Dicke M, Pieterse CMJ (2005) Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant Microbe Interact 18:923–937PubMedCrossRefGoogle Scholar
  8. Douds DD, Millner P (1999) Biodiversity of arbuscular mycorrhizal fungi in agroecosystems. Agric Ecosyst Environ 74:77–93CrossRefGoogle Scholar
  9. Elsen A, Gervacio D, Swennen R, de Waele D (2008) AMF-induced biocontrol against plant parasitic nematodes in Musa sp.: a systemic effect. Mycorrhiza 18:251–256PubMedCrossRefGoogle Scholar
  10. Engelberth J, Alborn HT, Schmelz EA, Tumlinson JH (2004) Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci USA 101:1781–1785PubMedCrossRefGoogle Scholar
  11. Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280PubMedCrossRefGoogle Scholar
  12. Frost CJ, Appel HM, Carlson JE, de Moraes CM, Mescher MC, Schultz JC (2007) Within-plant signalling via volatiles overcomes vascular constraints on systemic signalling and primes responses against herbivores. Ecol Lett 10:490–498PubMedCrossRefGoogle Scholar
  13. Gange AC (1996) Reduction in vine weevil larval growth by mycorrhizal fungi. Mitt Biol Bund Forst 316:56–60Google Scholar
  14. Gange AC (2001) Species-specific responses of a root- and shoot-feeding insect to arbuscular mycorrhizal colonization of its host plant. New Phytol 150:611–618CrossRefGoogle Scholar
  15. Gange AC, West HM (1994) Interactions between arbuscular mycorrhizal fungi and foliar-feeding insects in Plantago lanceolata L. New Phytol 128:79–87CrossRefGoogle Scholar
  16. Gange AC, Brown VK, Sinclair GS (1994) Reduction of black vine weevil growth by vesicular-arbuscular mycorrhizal fungi. Entomol Exp Appl 70:115–119CrossRefGoogle Scholar
  17. Gange AC, Bower E, Brown VK (1999) Positive effects of an arbuscular mycorrhizal fungus on aphid life history traits. Oecologia 120:123–131CrossRefGoogle Scholar
  18. Hartley SE, Gange AC (2009) Impacts of plant symbiotic fungi on insect herbivores: mutualism in a multitrophic context. Annu Rev Entomol 54:323–342PubMedCrossRefGoogle Scholar
  19. Hause B, Maier W, Miersch O, Kramell R, Strack D (2002) Induction of jasmonate biosynthesis in arbuscular mycorrhizal barley roots. Plant Physiol 130:1213–1220PubMedCrossRefGoogle Scholar
  20. Hause B, Mrosk C, Isayenkov S, Strack D (2007) Jasmonates in arbuscular mycorrhizal interactions. Phytochemistry 8:101–110CrossRefGoogle Scholar
  21. Heil M, Silvabueno JC (2007) Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proc Natl Acad Sci USA 140:5467–5472CrossRefGoogle Scholar
  22. Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66PubMedCrossRefGoogle Scholar
  23. Howe GA, Ryan CA (1999) Suppressors of systemin signaling identify genes in the tomato wound response pathway. Genetics 153:1411–1421PubMedGoogle Scholar
  24. Jung HW, Tschaplinski TJ, Wang L, Glazebrook J, Greenberg JT (2009) Priming in systemic plant immunity. Science 324:89–91PubMedCrossRefGoogle Scholar
  25. Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38:651–664PubMedCrossRefGoogle Scholar
  26. Karban R, Baldwin IT (1997) Induced responses to herbivory. University of Chicago Press, ChicagoCrossRefGoogle Scholar
  27. Kessler A, Halitschke R, Diezel C, Baldwin IT (2006) Priming of plant defense responses in nature by airborne signaling between Artemisia tridentata and Nicotiana attenuata. Oecologia 148:280–292PubMedCrossRefGoogle Scholar
  28. Kiefer E, Heller W, Ernst D (2000) A simple and efficient protocol for isolation of functional RNA from plant tissues rich in secondary metabolites. Plant Mol Biol Rep 18:33–39Google Scholar
  29. Kim J, Felton GW (2013) Priming of antiherbivore defensive responses in plants. Insect Sci 20:273–285CrossRefGoogle Scholar
  30. Koricheva J, Gange AC, Jones T (2009) Effects of mycorrhizal fungi on insect herbivores: a meta-analysis. Ecology 90:2088–2097PubMedCrossRefGoogle Scholar
  31. León-Morcillo RJ, Angel J, Martín-Rodríguez, Vierheilig H, Ocampo JA, García-Garrido JM (2012) Late activation of the 9-oxylipin pathway during arbuscular mycorrhiza formation in tomato and its regulation by jasmonate signalling. J Exp Bot 63:545–3558Google Scholar
  32. Li CY, Liu GH, Xu CC, Lee GI, Bauer P, Ling HQ, Ganal MW, Howe GA (2003) The tomato suppressor of prosystemin-mediated responses 2 gene encodes a fatty acid desaturase required for the biosynthesis of jasmonic acid and the production of a systemic wound signal for defense gene expression. Plant Cell 15:1646–1661PubMedCrossRefGoogle Scholar
  33. Pozo MJ, Azcon-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398PubMedCrossRefGoogle Scholar
  34. Pozo MJ, Verhage A, García-Andrade J, García JM, Azcon-Aguilar C (2009) Priming plant defence against pathogens by arbuscular mycorrhizal fungi. In: Azcón-Aguilar C, Gianinazzi S, Barea JM, Gianinazzi-Pearson V (eds) Mycorrhizas - functional processes and ecological impact. Springer- Verlag, Berlin Heidelberg, pp 123–135CrossRefGoogle Scholar
  35. Ramadan A, Muroi A, Arimura G (2011) Herbivore-induced maize volatiles serve as priming cues for resistance against post-attack by the specialist armyworm Mythimna separata. J Plant Interact 6:155–158CrossRefGoogle Scholar
  36. Rasmann S, De Vos M, Casteel CL, Tian D, Halitschke R, Sun JY, Agrawal AA, Felton GW, Jander G (2012) Herbivory in the previous generation primes plants for enhanced insect resistance. Plant Physiol 158:854–863PubMedCrossRefGoogle Scholar
  37. Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53PubMedCrossRefGoogle Scholar
  38. Schaller F, Schaller A, Stintz A (2005) Biosynthesis and metabolism of jasmonates. J Plant Growth Regul 23:179–199Google Scholar
  39. Slaughter A, Daniela X, Flors V, Luna E, Hohn B, Mauch-Mani B (2012) Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol 158:835–843PubMedCrossRefGoogle Scholar
  40. Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, LondonGoogle Scholar
  41. Smith SE, Facelli E, Pope S, Smith FA (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326:3–20CrossRefGoogle Scholar
  42. Song YY, Zeng RS, Xu JF, Li J, Shen X, Yihdego WG (2010) Interplant communication of tomato plants through underground common mycorrhizal networks. PLoS One 5:e13324PubMedCrossRefGoogle Scholar
  43. Song YY, Wang RL, Wei XC, Lu YJ, Wu GZ, Su YJ, Zeng RS (2011) Mechanism of tomato plants enhanced disease resistance against early blight primed by arbuscular mycorrhizal fungus Glomus versiforme. Chin J Appl Ecol 22:2316–2324 (in Chinese)Google Scholar
  44. Ton J, D’alessandro M, Jourdie V, Jakab G, Karlen D, Held M, Mauch-Mani B, Turlings TCJ (2006) Priming by airborne signals boosts direct and indirect resistance in maize. Plant J 49:16–26PubMedCrossRefGoogle Scholar
  45. van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 365:69–72Google Scholar
  46. van Hulten M, Pelser M, van Loon LC, Pieterse CMJ, Ton J (2006) Costs and benefits of priming for defense in Arabidopsis. Proc Natl Acad Sci USA 103:5602–5607PubMedCrossRefGoogle Scholar
  47. van Wees SCM, van der Ent S, Pieterse CMJ (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448PubMedCrossRefGoogle Scholar
  48. Vogelsang KM, Reynolds HL, Bever JD (2006) Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system. New Phytol 172:554–562PubMedCrossRefGoogle Scholar
  49. Waldbauer GP, Cohen RW, Friedman S (1984) An improved procedure for laboratory rearing of the corn earworm, Heliothis zea (Lepidoptera: Noctuidae). Great Lakes Entomol 17:113–118Google Scholar
  50. Wooley SC, Paine TD (2011) Infection by mycorrhizal fungi increases natural enemy abundance on tobacco (Nicotiana rustica). Environ Entomol 40:36–41PubMedCrossRefGoogle Scholar
  51. Worrall D, Holroyd GH, Moore JP, Glowacz M, Croft P, Taylor JE, Paul ND, Roberts MR (2012) Treating seeds with activators of plant defence generates long-lasting priming of resistance to pests and pathogens. New Phytol 193:770–778PubMedCrossRefGoogle Scholar
  52. Zeng RS (2006) Disease resistance in plants through mycorrhizal fungi induced allelochemicals. In: Inderjit, Mukerji KG (eds) Allelochemicals: biological control of plant pathogens and diseases. Springer, Dordrecht, pp 181–192CrossRefGoogle Scholar
  53. Zvereva EL, Kozlov MV, Niemela P, Haukioja E (1997) Delayed induced resistance and increase in leaf fluctuating asymmetry as responses of Salix borealis to insect herbivory. Oecologia 109:368–373CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Yuan Yuan Song
    • 1
    • 2
    • 3
  • Mao Ye
    • 1
    • 2
  • Chuan You Li
    • 3
  • Rui Long Wang
    • 1
    • 2
  • Xiao Chen Wei
    • 1
    • 2
  • Shi Ming Luo
    • 1
    • 2
  • Ren Sen Zeng
    • 1
    • 2
  1. 1.State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresourcesSouth China Agricultural UniversityGuangzhouChina
  2. 2.Key Laboratory of Tropical Agro-environment of Ministry of Agriculture of ChinaSouth China Agricultural UniversityGuangzhouChina
  3. 3.Institute of Genetics and Developmental Biology of the Chinese Academy of SciencesBeijingChina

Personalised recommendations