Advertisement

Journal of Chemical Ecology

, Volume 39, Issue 5, pp 602–611 | Cite as

Volatile Organic Compounds of Conspecific-Damaged Eucalyptus benthamii Influence Responses of Mated Females of Thaumastocoris peregrinus

  • Camila B. C. Martins
  • Paulo H. G. ZarbinEmail author
Article

Abstract

Plants respond to herbivory by synthesizing and releasing novel blends of volatile organic compounds (VOCs). Natural enemies are attracted to these VOCs, but little is known about the effects of these chemicals on the herbivores themselves. We studied the effect of Thaumastocoris peregrinus herbivory on VOCs released by Eucalyptus benthamii plants and the responses of this herbivore to the VOCs. In total, 12 compounds released by E. benthamii were identified. Five compounds (β-pinene, linalool, 9-epi-(E)-caryophyllene, viridiflorol, and one unidentified compound) emitted after herbivore and mechanical damage were not detected in collections from undamaged plants. The three most abundant VOCs, α-pinene, aromadendrene, and globulol, were released in greater quantities from herbivore-damaged plants compared to plants with mechanical damage, which, in turn, released greater amounts than undamaged (control) plants. The VOCs emitted after herbivore damage did not differ during the photophase and scotophase in either quantity or quality. In an olfactometer, mated female T. peregrinus showed a preference for undamaged plants over herbivore-damaged plants, and also for hexane over α-pinene at an amount equivalent to that released by a herbivore-damaged plant. In the olfactometer, virgin females did not exhibit any preference between conspecific-damaged or undamaged plants.

Keywords

Bronze bug Forestry pest Herbivore-induced plant volatiles (HIPVs) terpenes VOCs Heteroptera Thaumastocoridae 

Notes

Acknowledgments

The authors thank Dr. Delia Pinto for the improvement of the manuscript, Dr. Leonardo Rodrigues Barbosa from the Embrapa Florestas—CNPF Colombo/PR for the insects and plants, Dr. Maurício Osvaldo Moura for the statistical analyses, the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Semioquímicos na Agricultura (INCT) - for the financial support.

References

  1. Adams, R. P. 2007. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th Edition. Allured Publishing Corporation, 804 pp.Google Scholar
  2. Ayres, M., Ayres JR. M., and Santos, A. S. 2003. Bioestat 3.0. Soc. Civil Mamirauá, Belém.Google Scholar
  3. BATISH, D. R., SINGH, H. P., KOHLI, R. K., and KAUR, S. 2008. Eucalyptus essential oil as a natural pesticide. Forest Ecol. Manag. 256:2166–2174.CrossRefGoogle Scholar
  4. Bouwer, M. C. 2010. Identification of volatile organic compounds from Eucalyptus detected by Gonipterus scutellatus (Gyllenhal) females. MSc dissertation. University of Pretoria, Pretoria.Google Scholar
  5. Delphia, C. M., Mescher, M. C., and de Moraes, C. M. 2007. Induction of Plant Volatiles by Herbivores with Different Feeding Habits and the Effects of Induced Defenses on Host-Plant Selection by Thrips. J. Chem. Ecol. 33:997–1012.PubMedCrossRefGoogle Scholar
  6. de Moraes, C. M., Mescher, M. C., and Tumlinson, J. H. 2001. Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature. 410:577–580.PubMedCrossRefGoogle Scholar
  7. de Moraes, C. M., Lewis, W. J., and PARE, P. W. 1998. Herbivore-infested plants selectively attract parasitoids. Nature. 393:570–573.CrossRefGoogle Scholar
  8. Dicke, M. and van Loon, J. J. A. 2000. Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context. Entomol. Exp. Appl. 97:237–249.CrossRefGoogle Scholar
  9. Döll-Boscardin, P. M., Farago, P. V., Nakashima, T., dos Santos, P. E. T., and de Paula, J. F. P. 2010. Estudo Anatômico e Prospecção Fitoquímica de Folhas de Eucalyptus benthamii Maiden et Cambage. Lat. Am. J. Pharm. 29:94–101.Google Scholar
  10. He, C., Murray, F., and Lyons, T. 2000. Monoterpene and isoprene emissions from 15 Eucalyptus species in Australia. Atmos. Environ. 34:645–655.CrossRefGoogle Scholar
  11. Hegde, M., Oliveira, J. N., da Costa, J. G., Bleicher, E., Santana, A. E. G., Bruce, T. J. A., Caulfield, J., Dewhirst, S. Y., Woodcock, C. M., Pickett, J. A., and Birkett, M. A. 2011. Identification of Semiochemicals Released by Cotton, Gossypium hirsutum, Upon Infestation by the Cotton Aphid, Aphis gossypii. J. Chem. Ecol. 37:741–750.PubMedCrossRefGoogle Scholar
  12. Kesselmeier, J. and Staudt, M. 1999. Biogenic Volatile Organic Compounds (VOC): An Overview on Emission, Physiology and Ecology. J. Atmos. Chem. 33:23–88.CrossRefGoogle Scholar
  13. Kugimiya, S., Shimoda, T., Wajnberg, E., Uefune, M., and Takabayashi, J. 2010. Host-searching responses to herbivory-associated chemical information and patch use depend on mating status of female solitary parasitoid wasps. Ecol. Entomol. 35:279–286.CrossRefGoogle Scholar
  14. LIU, Z. L., YU, M., and LI, X. A. M. 2011. Repellent activity of eight essential oils of Chinese Medicinal Herbs to Blatella germanica. Rec. Nat. Prod. 5:176–183.Google Scholar
  15. Loughrin, J. H., Manukian, A., Heath, R. R., and Tumlinson, J. H. 1994. Diurnal cycle of emission of induced volatile terpenoids by herbivore-injured cotton plants. P Natl Acad Sci USA 21:1217–1227.Google Scholar
  16. Matsui, K. 2006. Green leaf volatiles: Hydroperoxide lyase pathway of oxylipin metabolism. Cur. Opin. Plant Bio. 9:274–280.CrossRefGoogle Scholar
  17. NADEL, R. L. and SLIPPERS, B. 2009. DNA bar-coding reveals source and patterns of Thaumastocoris peregrinus invasions in South Africa and South America. Invasions. 12:1067–1077.CrossRefGoogle Scholar
  18. Piesik, D., Wenda-Piesik, A., Kotwica, K., Tyszcarz, A., and Delaney, K. J. 2011. Gastrophysa polygoni herbivory on Rumex confertus: Single leaf VOC induction and dose dependent herbivore attraction/repellence to individual compounds. J. Plant Physiol. 168:2134–2138.PubMedCrossRefGoogle Scholar
  19. Proffit, M., Birgersson, G., Bengtsson, M., REIS Jr., R., Witzgall, P., and LIMA, E. 2011. Attraction and Oviposition of Tuta absoluta Females in Response to Tomato Leaf Volatiles. J. Chem. Ecol. 37:565–574.PubMedCrossRefGoogle Scholar
  20. R Development Core Team. 2011. R: a language and environment for statistical 584 computing. http://www.R-project.org.
  21. Romeis, J., Ebbinghaus, D., and Scherkenbeck, J. 2003. Factors accounting for the variability in the behavioral response of the onion fly (Delia antiqua) to n-dipropyl disulfide. J. Chem. Ecol. 29:2131–2142.PubMedCrossRefGoogle Scholar
  22. Schültz, S., WEIßBECKER, B., KLEIN, A., and HUMMEL, H. E. 1997. Host plant selection of the Colorado Potato Beetle as influenced by damage induced volatiles of the potato plant. Naturwissenschaften 84:212–217.CrossRefGoogle Scholar
  23. Smith, B. 1999. Infrared Spectral Interpretation: A Systematic Approach. CRC Press, 265 pp.Google Scholar
  24. STAUDT, M., BERTIN, N., HANSEN, U., SEUFERT, G., CICCIOLI, P., FOSTER, P., FRENZEL, B., and FUGIT, J.-L. 1997. Seasonal and diurnal patterns of monoterpene emissions from Pinus pinea (L.) under field conditions. Atmos. Environ. 31:145–156.CrossRefGoogle Scholar
  25. Su, Y. U.-C. H. A. N. G, Ho, C. H. E. N.-L. U. N. G., Wang, E. I.-C. H. E. N, and Chang, S. H. A. N. G.-T. S. E. N. 2006. Antifungal Activities and Chemical Compositions of Essential Oils from Leaves of Four Eucalypts. Taiwan J. For. Sci. 21:49–61.Google Scholar
  26. Thaler, J. S. 1999. Jasmonate-inducible plant defenses cause increased parasitism of herbivores. Nature. 399:686–588.CrossRefGoogle Scholar
  27. Turlings, T. C. J., Tumlinson, J. H., and Lewis, W. J. 1990. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science. 250:1251–1253.PubMedCrossRefGoogle Scholar
  28. Turlings, T. C. J. and Wäckers, F. 2004. Recruitment of predators and parasitoids by herbivore-injured plants, pp. 21–75, in R. T. Cardé and J. G. Millar (eds.), Advances in Insect Chemical Ecology. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  29. Walling, L. L. 2000. The myriad plant responses to herbivores. J. Plant Growth Regul. 19:195–216.PubMedGoogle Scholar
  30. Wilcken, C., Soliman, E., Soliman, E. P., Sá, L. A. N., Barbosa, L. R., Dias, T. K. R., Ferreira-Filho, P. J., and Oliveira, R. J. R. 2010. Bronze bug Thaumastocoris peregrinus Carpintero and Dellapé (Hemiptera: Thaumastocoridae) on Eucalyptus in Brazil and its distribution. J. Plant Protection Res. 50:201–205.Google Scholar
  31. Winters, A. J., Adams, M. A., Bleby, T. M., Rennenberg, H., Steigner, D., STEINBRECHER, and Kreuzwieser, R. J. 2009. Emissions of isoprene, monoterpene and short-chained carbonyl compounds from Eucalyptus spp. in southern Australia. Atmos. Environ. 43:3035–3043.CrossRefGoogle Scholar
  32. Zarbin, P. H. G., Ferreira, J. T. B., and Leal, W. S. 1999. Metodologias gerais empregadas no isolamento e identificação estrutural de feromônio de insetos. Química Nova 22:263–268.CrossRefGoogle Scholar
  33. Zini, C. A., Augusto, F., Christensen, E., Carama, E. B., and Pawliszyn, J. 2002. SPME Applied to the Study of Volatile Organic Compounds Emitted by Three Species of Eucalyptus in Situ. J. Agric. Food Chem. 50:7199–7205.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Departamento de QuímicaLaboratório de Semioquímicos, Universidade Federal do Paraná (UFPR)Curitiba-PRBrazil

Personalised recommendations