Journal of Chemical Ecology

, Volume 39, Issue 5, pp 569–578 | Cite as

Human Skin Volatiles: A Review

  • Laurent Dormont
  • Jean-Marie Bessière
  • Anna Cohuet
Review Article


Odors emitted by human skin are of great interest to biologists in many fields; applications range from forensic studies to diagnostic tools, the design of perfumes and deodorants, and the ecology of blood-sucking insect vectors of human disease. Numerous studies have investigated the chemical composition of skin odors, and various sampling methods have been used for this purpose. The literature shows that the chemical profile of skin volatiles varies greatly among studies, and the use of different sampling procedures is probably responsible for some of these variations. To our knowledge, this is the first review focused on human skin volatile compounds. We detail the different sampling techniques, each with its own set of advantages and disadvantages, which have been used for the collection of skin odors from different parts of the human body. We present the main skin volatile compounds found in these studies, with particular emphasis on the most frequently studied body regions, axillae, hands, and feet. We propose future directions for promising experimental studies on odors from human skin, particularly in relation to the chemical ecology of blood-sucking insects.


Blood-sucking insects Human Chemical ecology Sampling method Skin odor Volatiles 



We thank Doyle McKey, Université Montpellier II and CEFE-CNRS, for reviewing the manuscript and for useful discussions.


  1. Adams, R. P. 2007. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy, 4th ed. Allured Publishing, Carol Stream.Google Scholar
  2. Agelopoulos, N. and Pickett, J. 1998. Headspace analysis in chemical ecology: the effects of different sampling methods on the ratios of volatile compounds present in headspace samples. J. Chem. Ecol. 24:1161–1172.CrossRefGoogle Scholar
  3. Ara, K., Hama, M., Akiba, S., Koike, K., Okisaka, K., Hagura, T., Kamiya, T., and Tomita, F. 2006. Foot odor due to microbial metabolism and its control. Can. J. Microbiol. 52:357–364.PubMedCrossRefGoogle Scholar
  4. Barzantny, H., Brune, I., and Tauch, A. 2012a. Molecular basis of human body odour formation: insights deduced from corynebacterial genome sequences. Int. J. Cosmet. Sci. 34:2–11.PubMedCrossRefGoogle Scholar
  5. Barzantny, H., Schröder, J., Strotmeier, J., Fredrich, E., Brune, I., and Tauch, A. 2012b. The transcriptional regulatory network of Corynebacterium jeikeium K411 and its interaction with metabolic routes contributing to human body odor formation. J. Biotechnol. 159:235–248.PubMedCrossRefGoogle Scholar
  6. Behan, J. M., Macmaster, A. P., Perring, K. D., and Tuck, K. M. 1996. Insight into how skin changes perfume. Int. J. Cosmet. Sci. 18:237–246.PubMedCrossRefGoogle Scholar
  7. Bernier, U. R., Kline, D. L., Barnard, D. R., Schreck, C. E., and Yost, R. A. 2000. Analysis of human skin emanations by gas chromatography ⁄ mass spectrometry. 2. Identification of volatile compounds that are candidate attractants for the yellow fever mosquito Aedes aegypti. Anal. Chem. 72:747–756.PubMedCrossRefGoogle Scholar
  8. Brooksbank, B. W. L., Brown, R., and Gustafsson, J. A. 1974. The detection of 5-α-androst-16-en-3-α-ol in human male axillary sweat. Experientia 30:864–865.PubMedCrossRefGoogle Scholar
  9. Bruce, T. J. A. and Pickett, J. A. 2011. Perception of plant volatile blends by herbivorous insects—finding the right mix. Phytochemistry 72:1605–1611.PubMedCrossRefGoogle Scholar
  10. Carlson, J. R. and Carey, A. F. 2011. Scent of a human. Decoding how a mosquito sniffs out human targets could lead to better traps and repellents that cut malaria’s spread. Sci. Am. 305:76–79.PubMedCrossRefGoogle Scholar
  11. Caroprese, A., Gabbanini, S., Beltramini, C., Lucchi, E., and Valgimigli, L. 2009. HS-SPME-GC-MS analysis of body odor to test the efficacy of foot deodorant formulations. Skin Res. Technol. 15:503–510.PubMedCrossRefGoogle Scholar
  12. Charpentier, M. J. E., Barthes, N., Proffit, M., Bessière, J.-M., and Grison, C. 2012. Critical thinking in the chemical ecology of mammalian communication: roadmap for future studies. Funct. Ecol. 26:769–774.CrossRefGoogle Scholar
  13. Constantini, C., Birkett, M. A., Gibson, G., Ziesmann, J., Sagnon, N. F., Mohammed, H. A., Coluzzi, M., and Pickett, J. A. 2001. Electroantennogram and behavioural responses of the malaria vector Anopheles gambiae to human-specific sweat components. Med. Vet. Entomol. 15:259–266.CrossRefGoogle Scholar
  14. Cork, A. and Park, K. C. 1996. Identification of electrophysiologically-active compounds for the malaria mosquito, Anopheles gambiae, in human sweat extracts. Med. Vet. Entomol. 10:269–276.PubMedCrossRefGoogle Scholar
  15. Cornet, S., Nicot, A., Rivero, A., and Gandon, S. 2012. Malaria infection increases bird attractiveness to uninfected mosquitoes. Ecol. Lett.. doi: 10.1111/ele.12041.PubMedGoogle Scholar
  16. Curran, A. M., Rabin, S. I., Prada, P. A., and Furton, K. G. 2005. Comparison of the volatile organic compounds present in human odor using SPME-GC/MS. J. Chem. Ecol. 31:1613–1625.CrossRefGoogle Scholar
  17. Curran, A. M., Rabin, S. I., Prada, P. A., and Furton, K. G. 2006. On the definition and measurement of human scent: response by Curran et al. J. Chem. Ecol. 32:1617–1623.CrossRefGoogle Scholar
  18. Curran, A. M., Prada, P. A., and Furton, K. G. 2010a. Canine human scent identifications with post-blast debris collected from improvised explosive devices. Forensic Sci. Int. 199:103–108.PubMedCrossRefGoogle Scholar
  19. Curran, A. M., Prada, P. A., and Furton, K. G. 2010b. The differentiation of the volatile organic signatures of individuals through SPME-GC/MS of characteristic human scent compounds. J. Forensic Sci. 55:50–57.PubMedCrossRefGoogle Scholar
  20. D’Alessandro, M., Brunner, V., Von Mérey, G., and Turlings, T. C. J. 2009. Strong attraction of the parasitoid Cotesia marginiventris towards minor volatile compounds of maize. J. Chem. Ecol. 35:999–1008.PubMedCrossRefGoogle Scholar
  21. Degreef, L. E. and Furton, K. G. 2011. Collection and identification of human remains volatiles by non-contact, dynamic airflow sampling and SPME-GC-MS using various sorbent materials. Anal. Bioanal. Chem. 401:1295–1307.CrossRefGoogle Scholar
  22. Degreef, L. E., Curran, A. M., and Furton, K. G. 2011. Evaluation of selected sorbent materials for the collection of volatile organic compounds related to human scent using non-contact sampling mode. Forensic Sci. Int. 209:133–142.CrossRefGoogle Scholar
  23. de Jong, R. and Knols, B. G. J. 1995. Selection of biting sites on man by two malaria mosquito species. Experientia 51:80–84.PubMedCrossRefGoogle Scholar
  24. Dekker, T., Takken, W., Knols, B. G. J., Bouman, E., Laak, S. V. D., Bever, A. D., and Huisman, P. W. T. 1998. Selection of biting sites on a human host by Anopheles gambiae s.s., An. arabiensis and An. quadriannulatus. Entomol. Exp. Appl. 87:295–300.CrossRefGoogle Scholar
  25. Dekker, T., Geier, M., and Cardé, R. T. 2005. Carbon dioxide instantly sensitizes female yellow fever mosquitoes to human skin odors. J. Exp. Biol. 208:2963–2972.PubMedCrossRefGoogle Scholar
  26. Dormont, L., Bessière, J.-M., Mc Key, D., and Cohuet, A. 2013. New methods for field collection of human skin volatiles and perspectives for their application in the chemical ecology of human/pathogen/vector interactions. J. Exp. Biol. doi: 10.1242/jeb.085936.
  27. Duan, C., Shen, Z., Wu, D., and Guan, Y. 2011. Recent developments in solid-phase microextraction for on-site sampling and sample preparation. Trends Anal. Chem. 30:1568–1574.CrossRefGoogle Scholar
  28. Dudareva, N., Pichersky, E., and Gershenzon, J. 2004. Biochemistry of plant volatiles. Plant Physiol. 135:1893–1902.PubMedCrossRefGoogle Scholar
  29. Fierer, N., Hamady, M., Lauber, C. L., and Knight, R. 2008. The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc. Natl. Acad. Sci. U. S. A. 105:17994–17999.PubMedCrossRefGoogle Scholar
  30. Friedman, M. I., Preti, G., Deems, R. O., Friedman, L. S., Munoz, S. J., and Maddrey, W. C. 1994. Limonene in expired lung air of patients with liver disease. Dig. Dis. Sci. 39:1672–1676.PubMedCrossRefGoogle Scholar
  31. Gallagher, M., Wysocki, C. J., Leyden, J. J., Spielman, A. I., Sun, X., and Preti, G. 2008. Analyses of volatile organic compounds from human skin. Br. J. Dermatol. 159:780–791.PubMedCrossRefGoogle Scholar
  32. Goetz, N., Kaba, G., Good, D., Hussler, G., and Bore, P. 1988. Detection and identification of volatile compounds evolved from human hair and scalp using headspace gas chromatography. J. Soc. Cosmet. Chem. 39:1–13.Google Scholar
  33. Grice, E. A., Kong, H. H., Conlan, S., Deming, C. B., Davis, J., Young, A. C., Bouffard, G. G., Blakesley, R. W., Murray, P. R., Green, E. D., Turner, M. L., and Segre, J. A. 2009. Topographical and temporal diversity of the human skin microbiome. Science 324:1190–1192.PubMedCrossRefGoogle Scholar
  34. Harraca, V., Ryne, C., Birgersson, G., and Ignell, R. 2012. Smelling your way to food: can bed bugs use our odour? J. Exp. Biol. 215:623–629.PubMedCrossRefGoogle Scholar
  35. Havlicek, J. and Lenochova, P. 2006. The effect of meat consumption on body odor attractiveness. Chem. Senses 31:747–752.PubMedCrossRefGoogle Scholar
  36. Hawkes, F., Young, S., and Gibson, G. 2012. Modification of spontaneous activity patterns in the malaria vector Anopheles gambiae sensu stricto when presented with host-associated stimuli. Physiol. Entomol. 37:233–240.CrossRefGoogle Scholar
  37. Haze, S., Gozu, Y., Nakamura, S., Kohno, Y., Sawano, K., Ohta, H., and Yamazaki, K. 2001. 2-nonenal newly found in human body odor tends to increase with aging. J. Investig. Dermatol. 116:520–524.PubMedCrossRefGoogle Scholar
  38. James, A. G., Casey, J., Hyliands, D., and Mycock, G. 2004a. Fatty acid metabolism by cutaneous bacteria and its role in axillary malodour. World J. Microbiol. Biotechnol. 20:787–793.CrossRefGoogle Scholar
  39. James, A. G., Hyliands, D., and Johnston, H. 2004b. Generation of volatile fatty acids by axillary bacteria. Int. J. Cosmet. Sci. 26:149–156.PubMedCrossRefGoogle Scholar
  40. Jawara, M., Smallegange, R. C., Jeffries, D., Nwakanma, D. C., Awolola, T. S., Knols, B. G., Takken, W., and Conway, D. J. 2009. Optimizing odor-baited trap methods for collecting mosquitoes during the malaria season in the Gambia. PLoS One 4:e8167.PubMedCrossRefGoogle Scholar
  41. Kanda, F., Yagi, E., Fukuda, M., Nakajima, K., Ohta, T., and Nakata, O. 1990. Elucidation of chemical compounds responsible for foot malodour. Brit. J. Dermatol. 22:771–776.Google Scholar
  42. Kim, K.-H., Jahan, S. A., and Kabir, E. 2012. A review of breath analysis for diagnosis of human health. Trends Anal. Chem. 33:1–8.CrossRefGoogle Scholar
  43. Knudsen, J. T., Eriksson, R., and Gershenzon, J. 2006. Diversity and distribution of floral scent. Bot. Rev. 72:1–120.CrossRefGoogle Scholar
  44. Kusano, M., Mendez, E., and Furton, K. G. 2011. Development of headspace SPME method for analysis of volatile organic compounds present in human biological specimens. Anal. Bioanal. Chem. 400:1817–1826.PubMedCrossRefGoogle Scholar
  45. Kusano, M., Mendez, E., and Furton, K. G. 2012. Comparison of the volatile organic compounds from different biological specimens for profiling potential. J. Forensic Sci.. doi: 10.1111/j.1556-4029.2012.02215.x.PubMedGoogle Scholar
  46. Lacey, E. S. and Cardé, R. T. 2011. Activation, orientation and landing of female Culex quinquefasciatus in response to carbon dioxide and odour from human feet: 3-D flight analysis in a wind tunnel. Med. Vet. Entomol. 25:94–103.PubMedCrossRefGoogle Scholar
  47. Lacroix, R., Mukabana, W. R., Gouagna, L. C., and Koella, J. C. 2005. Malaria infection increases attractiveness of humans to mosquitoes. PLoS Biol. 3:e298.PubMedCrossRefGoogle Scholar
  48. Lefèvre, T., Koella, J., Renaud, F., Hurd, H., Biron, D. G., and Thomas, F. 2006. New prospects for research on manipulation of insect vectors by pathogens. PLoS Pathog. 2:633–635.CrossRefGoogle Scholar
  49. Lefèvre, T., Gouagna, L., Dabire, K. R., Elguero, E., Fontenille, D., Costantini, C., and Thomas, F. 2010. Beer consumption increases human attractiveness to malaria mosquitoes. PLoS One 5:e9546.PubMedCrossRefGoogle Scholar
  50. Logan, J. G., Birkett, M. A., Clark, S. J., Powers, S., Seal, N. J., Wadhams, L. J., Mordue, A. J., and Pickett, J. A. 2008. Identification of human-derived volatile chemicals that interfere with attraction of Aedes aegypti mosquitoes. J. Chem. Ecol. 34:308–322.PubMedCrossRefGoogle Scholar
  51. Logan, J. G., Stanczyk, N. M., Hassanali, A., Kemei, J., Santana, A. E. G., Ribeiro, K. A. L., Pickett, J. A., and Mordue (Luntz), J. A. 2010. Arm-in-cage testing of natural human-derived mosquito repellents. Malar. J. 9:239–248.PubMedCrossRefGoogle Scholar
  52. Marshall, J., Holland, K. T., and Gribbon, E. M. 1988. A comparative study of the cutaneous microflora of normal feet with low and high levels of odour. J. Appl. Bacteriol. 65:61–68.PubMedCrossRefGoogle Scholar
  53. Martínez Lozano, P. and De La Mora, J. F. 2009. On-line detection of human skin vapors. J. Am. Soc. Mass Spectrom. 20:1060–1063.PubMedCrossRefGoogle Scholar
  54. Mebazaa, R., Mahmoudi, A., Rega, B., Ben Cheikh, R., and Camel, V. 2010. Analysis of human male armpit sweat after fenugreek ingestion: instrumental and sensory optimization of the extraction method. Food Chem. 120:771–782.CrossRefGoogle Scholar
  55. Mebazaa, R., Rega, B., and Camel, V. 2011. Analysis of human male armpit sweat after fenugreek ingestion: characterisation of odour active compounds by gas chromatography coupled to mass spectrometry and olfactometry. Food Chem. 128:227–235.CrossRefGoogle Scholar
  56. Meijerink, J., Braks, M. A. H., Brack, A., Adam, W., Dekker, T., Posthumus, M. A., van Beek, T. A., and van Loon, J. J. A. 2000. Identification of olfactory stimulants for Anopheles gambiae from human sweat samples. J. Chem. Ecol. 26:1367–1382.CrossRefGoogle Scholar
  57. Mostafa, T., El Khouly, G., and Hassan, A. 2012. Pheromones in sex and reproduction: do they have a role in humans? J. Adv. Res. 3:1–9.CrossRefGoogle Scholar
  58. Musteata, F. M. and Pawliszyn, J. 2007. In vivo sampling with solid phase microextraction. J. Biochem. Biophys. Methods 70:181–193.PubMedCrossRefGoogle Scholar
  59. Natsch, A., Gfeller, H., Gygax, P., and Schmid, J. 2005. Isolation of a bacterial enzyme releasing axillary malodor and its use as a screening target for novel deodorant formulations. Int. J. Cosmet. Sci. 27:115–122.PubMedCrossRefGoogle Scholar
  60. Natsch, A., Derrer, S., Flachsmann, F., and Schmidt, J. 2006. A broad diversity of volatile carboxylic acids, released by a bacterial amynoacylase from axilla secretions, as candidate molecules for the determination of human-body odor type. Chem. Biodivers. 3:1–20.PubMedCrossRefGoogle Scholar
  61. Njiru, B. N., Mukabana, W. R., Takken, W., and Knols, B. G. 2006. Trapping of the malaria vector Anopheles gambiae with odour-baited MM-X traps in semi-field conditions in western Kenya. Malar. J. 5:39–46.PubMedCrossRefGoogle Scholar
  62. Noël, F., Piérard-Franchimont, C., Piérard, G. E., and Quatresooz, P. 2012. Sweaty skin, background and assessments. Int. J. Dermatol. 516:647–655.CrossRefGoogle Scholar
  63. Ohge, H., Furne, J. K., Springfield, J., Ringwala, S., and Levitt, M. D. 2005. Effectiveness of devices purported to reduce flatus odor. Am. J. Gastroenterol. 100:397–400.PubMedCrossRefGoogle Scholar
  64. Ostrovskaya, A., Landa, P. A., Sokolinsky, M., Rosalia, A. D., and Maes, D. 2001. Study and identification of volatile compounds from human skin. J. Cosmet. Sci. 53:147–148.Google Scholar
  65. Pandey, S. K. and Kim, K.-H. 2011. Human body odor components and their determination. Trends Anal. Chem. 30:784–796.CrossRefGoogle Scholar
  66. Parshikov, I. A., Netrusov, A. I., and Sutherland, J. B. 2012. Microbial transformation of antimalarial terpenoids. Biotechnol. Adv. 30:1516–1523.PubMedCrossRefGoogle Scholar
  67. Pavlou, A. K. and Turner, A. P. 2000. Sniffing out the truth: clinical diagnosis using the electronic nose. Clin. Chem. Lab. Med. 38:99–112.PubMedCrossRefGoogle Scholar
  68. Penn, D. J., Oberzaucher, E., Grammer, K., Fischer, G., Soini, H. A., Wiesler, D., Novotny, M. V., Dixon, S. J., Xu, Y., and Brereton, R. G. 2006. Individual and gender fingerprints in human body odour. J. R. Soc. Interface. 4:331–340.CrossRefGoogle Scholar
  69. Prada, P. A. and Furton, K. G. 2008. Human scent detection: a review of its developments and forensic applications. Rev. Cienc. Foren. 1:81–87.Google Scholar
  70. Prada, P. A., Curran, A. M., and Furton, K. G. 2010. Comparison of extraction methods for the removal of volatile organic compounds (VOCs) present in sorbents used for human scent evidence collection. Anal. Methods 2:470–478.CrossRefGoogle Scholar
  71. Prada, P. A., Curran, A. M., and Furton, K. G. 2011. The evaluation of human hand odor volatiles on various textiles: a comparison between contact and noncontact sampling methods. J. Forensic Sci. 56 doi: 10.1111/j.1556-4029.2011.01762.x.
  72. Prada, P. A. and Furton, K. G. 2012. Recent advances in solid phase microextraction for forensic applications, pp. 877–891, in J. Pawliszyn (ed.), Comprehensive Sampling and Sample Preparation. Analytical Techniques for Scientists. Elsevier, Oxford.CrossRefGoogle Scholar
  73. Preti, G., Willse, A., Labows, J. N., Leyden, J. J., Wahl, J., and Kwak, J. 2006. On the definition and measurement of human scent: comments on Curran et al. J. Chem. Ecol. 32:1613–1616.PubMedCrossRefGoogle Scholar
  74. Prugnolle, F., Lefèvre, T., Renaud, F., Møller, A. P., Misse, D., and Thomas, F. 2009. Infection and body odours: evolutionary and medical perspectives. Infect. Genet. Evol. 9:1006–1009.PubMedCrossRefGoogle Scholar
  75. Qiu, Y. T., Smallegange, R. C., Hoppe, S., van Loon, J. J., Bakker, E. J., and Takken, W. 2004. Behavioural and electrophysiological responses of the malaria mosquito Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) to human skin emanations. Med. Vet. Entomol. 18:429–438.PubMedCrossRefGoogle Scholar
  76. Raguso, R. A. and Pellmyr, O. 1998. Dynamic headspace analysis of floral volatiles: a comparison of methods. Oikos 81:238–254.CrossRefGoogle Scholar
  77. Santonico, M., Lucantoni, G., Pennazza, G., Capuano, R., Galluccio, G., Roscioni, C., la Delfa, G., Consoli, D., Martinelli, E., Paolesse, R., di Natale, C., and D’Amico, A. 2012. In situ detection of lung cancer volatile fingerprints using bronchoscopic air-sampling. Lung Cancer 77:46–50.PubMedCrossRefGoogle Scholar
  78. Sastry, S. D., Buck, K. T., Janák, J., Dressler, M., and Preti, G. 1980. Volatiles emitted by humans, pp. 1085–1129, in G. R. Waller and O. C. Dermer (eds.), Biochemical Applications of Mass Spectrometry. Wiley, New York.Google Scholar
  79. Schmied, W. H., Takken, W., Killeen, G. F., Knols, B. G., and Smallegange, R. C. 2008. Evaluation of two counterflow traps for testing behaviour-mediating compounds for the malaria vector Anopheles gambiae s.s. under semi-field conditions in Tanzania. Malar. J. 7:230–238.PubMedCrossRefGoogle Scholar
  80. Shelley, W. B. and Hurley, H. J. 1953. The physiology of the human axillary apocrine sweat gland. J. Investig. Dermatol. 20:285–297.PubMedGoogle Scholar
  81. Smallegange, R. C., Verhulst, N. O., and Takken, W. 2011. Sweaty skin: an invitation to bite? Trends Parasitol. 27:143–148.PubMedCrossRefGoogle Scholar
  82. Suarez, F. L., Springfield, J., and Levitt, M. D. 1998. Identification of gases responsible for the odour of human flatus and evaluation of a device purported to reduce this odour. Gut 43:100–104.PubMedCrossRefGoogle Scholar
  83. Syed, Z. and Leal, W. S. 2009. Acute olfactory response of Culex mosquitoes to a human- and bird-derived attractant. Proc. Natl. Acad. Sci. U. S. A. 106:18803–18808.PubMedCrossRefGoogle Scholar
  84. Takken, W. and Knols, B. G. J. 1999. Odor-mediated behavior of Afrotropical malaria mosquitoes. Annu. Rev. Entomol. 44:131–157.PubMedCrossRefGoogle Scholar
  85. Taylor, D., Daulby, A., Grimshaw, S., James, G., Mercer, J., and Vaziri, S. 2003. Characterization of the microflora of the human axilla. Int. J. Cosmet. Sci. 25:137–145.PubMedCrossRefGoogle Scholar
  86. Tholl, D., Boland, W., Hansel, A., Loreto, F., Röse, U. S. R., and Schnitzler, J. P. 2006. Practical approaches to plant volatile analysis. Plant J. 45:540–560.PubMedCrossRefGoogle Scholar
  87. Verhulst, N. O., andriessen, R., Groenhagen, U., Bukovinszkine-Kiss, G., Schulz, S., Takken, W., van Loon, J. J. A., Schraa, G., and Smallegange, R. C. 2010a. Differential attraction of malaria mosquitoes to volatile blends produced by human skin bacteria. PLoS One 5:e15829.Google Scholar
  88. Verhulst, N. O., Takken, W., Dicke, M., Schraa, G., and Smallegange, R. C. 2010b. Chemical ecology of interactions between human skin microbiota and mosquitoes. FEMS Microbiol. Ecol. 74:1–9.PubMedCrossRefGoogle Scholar
  89. Verhulst, N. O., Mukabana, W. R., Takken, W., and Smallegange, R. C. 2011a. Human skin microbiota and their volatiles as odour baits for the malaria mosquito Anopheles gambiae s.s. Entomol. Exp. Appl. 139:170–179.CrossRefGoogle Scholar
  90. Verhulst, N. O., Qiu, Y. T., Beijleveld, H., Maliepaard, C. A., Knights, D., Schulz, S., Berg-Lyons, D., Lauber, C. L., Verduijn, W., Haasnoot, G. W., Mumm, R., Bouwmeester, H. J., Claas, F. H. J., Dicke, M., van Loon, J. J. A., Takken, W., Knight, R., and Smallegange, R. C. 2011b. Composition of human skin microbiota affects attractiveness to malaria mosquitoes. PLoS One 6:e28991.PubMedCrossRefGoogle Scholar
  91. Xu, Y., Dixon, S., Brereton, R., Soini, H., Novotny, M., Trebesius, K., Bergmaier, I., Oberzaucher, E., Grammer, K., and Penn, D. J. 2007. Comparison of human axillary odour profiles obtained by gas chromatography/mass spectrometry and skin microbial profiles obtained by denaturing gradient gel electrophoresis using multivariate pattern recognition. Metabolomics 3:427–437.CrossRefGoogle Scholar
  92. Yamazaki, S., Hoshino, K., and Kusuhara, M. 2010. Odor associated with aging. Anti-Aging Med. 7:60–65.CrossRefGoogle Scholar
  93. Zeng, X. N., Leyden, J. J., Spielman, A. I., and Preti, G. 1996. Analysis of characteristic human female axillary odors: qualitative comparison to males. J. Chem. Ecol. 22:237–257.CrossRefGoogle Scholar
  94. Zhang, Z. M., Cai, J. J., Ruan, G. H., and Li, G. K. 2005. The study of fingerprint characteristics of the emanations from human arm skin using original sampling system by SPME-GC/MS. J. Chromatogr. B 822:244–252.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Laurent Dormont
    • 1
  • Jean-Marie Bessière
    • 2
  • Anna Cohuet
    • 3
    • 4
  1. 1.Centre d’Ecologie Fonctionnelle et Evolutive, CNRS UMR 5175Montpellier Cedex 5France
  2. 2.Ecole Nationale Supérieure de Chimie de Montpellier, Laboratoire de Chimie AppliquéeMontpellierFrance
  3. 3.UMR MIVEGEC UM1-UM2-CNRS 5290-IRD 224, Institut de Recherche pour le DéveloppementMontpellier CedexFrance
  4. 4.IRSS, Direction Régionale de Bobo-DioulassoBobo-DioulassoBurkina Faso

Personalised recommendations