Journal of Chemical Ecology

, Volume 39, Issue 5, pp 579–590 | Cite as

Epicuticular Compounds of Drosophila subquinaria and D. recens: Identification, Quantification, and Their Role in Female Mate Choice

  • Sharon Curtis
  • Jacqueline L. Sztepanacz
  • Brooke E. White
  • Kelly A. Dyer
  • Howard D. Rundle
  • Paul Mayer


The epicuticle of various Drosophila species consists of long-chain cuticular hydrocarbons (CHCs) and their derivatives that play a role in waterproofing and a dynamic means of chemical communication. Here, via gas chromatography and mass spectrometry, we identified and quantified the epicuticular composition of D. recens and D. subquinaria, two closely related species that show a pattern of reproductive character displacement in nature. Twenty-four compounds were identified with the most abundant, 11-cis-Vaccenyl acetate, present only in males of each species. Also exclusive to males were five tri-acylglycerides. The 18 remaining compounds were CHCs, all shared between the sexes and species. These CHCs were composed of odd carbon numbers (C29, C31, C33, and C35), with an increase in structural isomers in the C33 and C35 groups. Saturated hydrocarbons comprise only methyl-branched alkanes and were found only in the C29 and C31 groups. Alkenes were the least prevalent, with alkadienes dominating the chromatographic landscape in the longer chain lengths. Sexual dimorphism was extensive with 6/8 of the logcontrast CHCs differing significantly in relative concentration between males and females in D. recens and D. subquinaria, respectively. Males of the two species also differed significantly in relative concentration of six CHCs, while females differed in none. Female-choice mating trials revealed directional sexual selection on male CHCs in a population of each species, consistent with female mate preferences for these traits. The sexual selection vectors differed significantly in multivariate trait space, suggesting that different pheromone blends determine male attractiveness in each species.


Cis-vaccenyl acetate Cuticular hydrocarbons Tri-acylglycerides Gas chromatography Pheromones Sexual selection 

Supplementary material

10886_2013_284_MOESM1_ESM.docx (263 kb)
ESM 1(DOCX 262 kb)


  1. Atchison, J. 1986. The Statistical Analysis of Compositional Data. Chapman and Hall, London.CrossRefGoogle Scholar
  2. Bartelt, R. J., Schaner, A. M., and Jackson, L. L. 1985. Cis-vaccenyl acetate as an aggregation pheromone in Drosophila melanogaster. J. Chem. Ecol. 11:1747–1756.CrossRefGoogle Scholar
  3. Bartelt, R. J., Armold, M. T., Schaner, A. M., and Jackson, L. L. 1986. Comparative analysis of cuticular hydrocarbons in the Drosophila virilis species group. Comp. Biochem. Physiol. 83B:731–742.Google Scholar
  4. Bastock, M. and Manning, A. 1955. The courtship of Drosophila melanogaster. Behaviour 8:85–111.CrossRefGoogle Scholar
  5. Beament, J. W. L. 1945. The cuticular lipoids of insects. J. Exp. Biol. 21:115–131.Google Scholar
  6. Billeter, J. C., Atallah, J., Krupp, J. J., Millar, J. G., and Levine, J. D. 2009. Specialized cells tag sexual and species identity in Drosophila melanogaster. Nature 461:987–991.PubMedCrossRefGoogle Scholar
  7. Blows, M. W. 2002. Interaction between natural and sexual selection during the evolution of mate recognition. Proc. R. Soc. Lond. B 269:1113–1118.CrossRefGoogle Scholar
  8. Blows, M. W. and Allan, R. A. 1998. Levels of mate recognition within and between two Drosophila species and their hybrids. Am. Nat. 152:826–837.PubMedCrossRefGoogle Scholar
  9. Buckner, J. S. 1993. Cuticular polar lipids of insects, pp. 247–248, in D. W. Stanley-Samuelson and D. R. Nelson (eds.), Insect Lipids: Chemistry, Biochemistry and Biology. University of Nebraska Press, Lincoln and London.Google Scholar
  10. Butterworth, F. M. 1969. Lipids of Drosophila: A newly detected lipid in the male. Science 163:1356–1357.PubMedCrossRefGoogle Scholar
  11. Carlson, D. A. and Yocom, S. R. 1986. Cuticular hydrocarbons from six species of tephritid fruit flies. Arch. Insect. Biochem. Physiol. 3:397–412.Google Scholar
  12. Carlson, D. A., Bernier, U. R., and Sutton, B. D. 1998. Elution patterns from capillary GC for methyl-branched alkanes. J. Chem. Ecol. 24:1845–1865.CrossRefGoogle Scholar
  13. Chenoweth, S. F. and Blows, M. W. 2005. contrasting mutual sexual selection on homologous signal traits in Drosophila serrata. Am. Nat. 165:281–289.PubMedCrossRefGoogle Scholar
  14. Chenoweth, S. F. and Blows, M. W. 2006. Dissecting the complex genetic basis of mate choice. Nat. Rev. Genet. 7:681–692.PubMedCrossRefGoogle Scholar
  15. Chenoweth, S. F., Rundle, H. D., and Blows, M. W. 2008. Genetic constraints and the evolution of display trait sexual dimorphism by natural and sexual selection. Am. Nat. 171:22–34.PubMedCrossRefGoogle Scholar
  16. Chenoweth, S. F., Hunt, J., and Rundle, H. D. 2012. Analyzing and comparing the geometry of individual fitness surfaces, pp. 126–149, in E. I. Svensson and R. Calsbeek (eds.), The Adaptive Landscape in Evolutionary Biology. Oxford University Press, Oxford.Google Scholar
  17. Coyne, J. A., Crittenden, A. P., and Mah, K. 1994. Genetics of a pheromonal difference contributing to reproductive isolation in Drosophila. Science 265:1461–1464.PubMedCrossRefGoogle Scholar
  18. Etges, W. J. and Ahrens, M. A. 2001. Premating isolation is determined by larval-rearing substrates in cactophilic Drosophila mojavensis. V. Deep geographic variation in epicuticular hydrocarbons among isolated populations. Am. Nat. 158:585–598.PubMedCrossRefGoogle Scholar
  19. Etges, W. J. and Jackson, L. L. 2001. Epicuticular hydrocarbon variation in Drosophila mojavensis cluster species. J. Chem. Ecol. 27:2125–2149.PubMedCrossRefGoogle Scholar
  20. Everaerts, C., Farine, J.-P., Cobb, M., and Ferveu, J.-F. 2010. Drosophila cuticular hydrocarbons revisited: mating status alters cuticular profiles. PLoS One 5:e9607.PubMedCrossRefGoogle Scholar
  21. Fairbairn, D. J. and Preziosi, R. F. 1996. Sexual selection and the evolution of sexual size dimorphism in the water strider, Aquarius remigis. Evolution 50:1549–1559.CrossRefGoogle Scholar
  22. Fang, S., Takahashi, A., and Wu, C. 2002. A mutation in the promoter of desaturase 2 is correlated with sexual isolation between Drosophila behavioural races. Genetics 162:781–784.PubMedGoogle Scholar
  23. Fernández, M. D. L. P., Chan, Y.-B., Yew, J. Y., Billeter, J.-C., Dreisewerd, K., Levine, J. D., and Kravitz, E. A. 2010. Pheromonal and behavioral cues trigger male-to-female aggression in Drosophila. PLoS Biol. 8:e100541.CrossRefGoogle Scholar
  24. Ferveur, J. 1997. Genetic feminization of pheromones and its behavioral consequences in Drosophila males. Science 276:1555–1558.PubMedCrossRefGoogle Scholar
  25. Ferveur, J.-F. 2005. Cuticular hydrocarbons: Their evolution and roles in Drosophila pheromonal communication. Behav. Genet. 35:279–295.PubMedCrossRefGoogle Scholar
  26. Gibbs, A. G. 1998. Water-proofing properties of cuticular lipids. Am. Zool. 38:471–482.Google Scholar
  27. Gibbs, A. G., Chippindale, A. K., and Rose, M. R. 1997. Physiological mechanisms of evolved desiccation resistance in Drosophila melanogaster. J. Exp. Biol. 200:1821–1832.PubMedGoogle Scholar
  28. Giglio, E. M. and Dyer, K. A. 2013. Divergence of premating behaviors in the closely related species Drosophila subquinaria and D. recens. Ecol. Evol. 3: In press.Google Scholar
  29. Grillet, M., Dartevelle, L., and Ferveur, J.-F. 2006. A Drosophila male pheromone affects female sexual receptivity. Proc. R. Soc. Biol. 273:315–323.CrossRefGoogle Scholar
  30. Hammad, L. A., Cooper, B. S., Fisher, N. P., Montooth, K. L., and Karty, J. A. 2011. Profiling and quantification of Drosophila melanogaster lipids using liquid chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 25:2959–2968.PubMedCrossRefGoogle Scholar
  31. Howard, R. W. and Blomquist, G. J. 2005. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu. Rev. Entomol. 50:371–393.PubMedCrossRefGoogle Scholar
  32. Howard, R. W., Mcdaniel, C. A., and Blomquist, G. J. 1978. Cuticular hydrocarbons of the eastern subterranean termite, Reticulitermes flavipes (Kollar) (Isoptera: Rhinotermitidae). J. Chem. Ecol. 4:233–245.Google Scholar
  33. Howard, R. W., Jackson, L. L., Banse, H., and Blows, M. W. 2003. Cuticular hydrocarbons of Drosophila birchii and D. serrata: Identification and role in mate choice in D. serrata. J. Chem. Ecol. 29:961–976.PubMedCrossRefGoogle Scholar
  34. Jaenike, J., Dyer, K. A., Cornish, C., and Minhas, M. S. 2006. Asymmetrical reinforcement and Wolbachia infection in Drosophila. PLoS Biol. 4:e325.PubMedCrossRefGoogle Scholar
  35. Jallon, J. M. 1984. A few chemical words exchanged by Drosophila during courtship and mating. Behav. Genet. 14:441–478.PubMedCrossRefGoogle Scholar
  36. Jallon, J. M. and David, J. R. 1987. Variation in cuticular hydrocarbons among the eight species of the Drosophila melanogaster subgroup. Evolution 41:294–302.CrossRefGoogle Scholar
  37. Jallon, J. M. and Wicker-Thomas, C. 2003. Genetic studies on pheromone production in Drosophila, pp. 253–280, in G. J. Bloomquist and R. G. Vogt (eds.), Insect Pheromone Biochemistry and Molecular Biology: The Biosynthesis and Detection of Pheromones and Plant Volatiles. Elsevier Academic Press, Amsterdam, The Netherlands.CrossRefGoogle Scholar
  38. Kent, C., Azanchi, R., Smith, B., Formosa, A., and Levine, J. D. 2008. Social context influences chemical communication in D. melanogaster males. Curr. Biol. 18:1384–1389.PubMedCrossRefGoogle Scholar
  39. Krupp, J. J., Kent, C., Billeter, J.-C., Azanchi, R., So, A. K.-C., Lucas, C., Smith, B. P., Schonfeld, J. A., and Levine, J. D. 2008. Social experience modifies pheromone expression and mating behavior in male Drosophila melanogaster. Curr. Biol. 18:1373–1383.PubMedCrossRefGoogle Scholar
  40. Kwan, L. and Rundle, H. D. 2009. Adaptation to desiccation fails to generate pre- and postmating isolation in replicate Drosophila melanogaster laboratory populations. Evolution 64:710–723.PubMedCrossRefGoogle Scholar
  41. Lande, R. and Arnold, S. J. 1983. The measurement of selection on correlated characters. Evolution 37:1210–1226.CrossRefGoogle Scholar
  42. Lockey, K. H. 1979. Insect cuticular hydrocarbons. Comp. Biochem. Physiol. 65:457–462.Google Scholar
  43. Markow, T. A. and Toolson, E. C. 1990. Temperature effects on epicuticular hydrocarbons and sexual isolation in Drosophila mojavensis, pp. 315–331, in S. F. Barker, W. T. Starmer, and R. J. McIntyre (eds.), Ecological and Evolutionary Genetics of Drosophila. Plenum Press, New York.CrossRefGoogle Scholar
  44. Mehren, J. E. 2007. Mate recognition: Should fly stay or should fly go. Curr. Biol. 17:240–242.CrossRefGoogle Scholar
  45. Mitchell-Olds, A. T. and Shaw, R. G. 1987. Regression analysis of natural selection: Statistical inference and biological interpretation. Evolution 41:1149–1161.CrossRefGoogle Scholar
  46. Miwa, T. K. 1963. Identification of peaks in gas–liquid chromatography. J. Am. Oil Chem. Soc. 40:309–313.CrossRefGoogle Scholar
  47. Mjøs, S. A. 2006. Prediction of equivalent chain lengths from two-dimensional fatty acid retention indices. J. Chromatogr. A 1122:249–254.PubMedCrossRefGoogle Scholar
  48. Nemoto, T., Doi, M., Oshio, K., Matsubayashi, H., Oguma, Y., Suzuki, T., and Kuvahara, Y. 1994. (Z, Z)-5,27-Tritriacontadiene: Major sex pheromone of Drosophila pallidosa (Diptera; Drosophilidae). J. Chem. Ecol. 20:3029–3037.CrossRefGoogle Scholar
  49. Ogg, C. L. and Stanley-Samuelson, D. W. 1992. Phospholipid and triacylglycerol fatty acid compositions of the major life stages and selected tissues of the tobacco hornworn Manduca sexta. Comp. Biochem. Physiol. 101:345–351.CrossRefGoogle Scholar
  50. Oliveira, C. C., Manfrin, M. H., Sene, F. D. M., Jackson, L. L., and Etges, W. J. 2011. Variations on a theme: diversification of cuticular hydrocarbons in a clade of cactophilic Drosophila. BMC Evol. Biol. 11:179.PubMedCrossRefGoogle Scholar
  51. Petfield, D., Chenoweth, S. F., Rundle, H. D., and Blows, M. W. 2005. Genetic variance in female condition predicts indirect genetic variance in male sexual display traits. Proc. Natl. Acad. Sci. U. S. A. 102:6045–6050.PubMedCrossRefGoogle Scholar
  52. Rouault, J., Capy, P., and Jallon, J. M. 2000. Variations of male cuticular hydrocarbons with geoclimatic variables: An adaptive mechanism in Drosophila melanogaster? Genetica 110:117–130.PubMedCrossRefGoogle Scholar
  53. Rundle, H. D., Chenoweth, S. F., and Blows, M. W. 2009. The diversification of mate preferences by natural and sexual selection. J. Evol. Biol. 22:1608–1615.PubMedCrossRefGoogle Scholar
  54. Sall, J., Creighton, L., and Lehman, A. 2005. JMP Start Statistics: A Guide to Statistics and Data Analysis Using JMP and JMP IN Software. Thomson Learning, Belmont, CA.Google Scholar
  55. Savarit, F. and Ferveur, J.-F. 2002. Genetic study of the production of sexually dimorphic cuticular hydrocarbons in relation with the sex-determination gene transformer in Drosophila melanogaster. Genet. Res. 79:23–40.PubMedCrossRefGoogle Scholar
  56. Sharma, M. D., Hunt, J., and Hosken, D. J. 2012. Antagonistic responses to natural and sexual selection and the sex-specific evolution of cuticular hydrocarbons in Drosophila simulans. Evolution 66:665–677.PubMedCrossRefGoogle Scholar
  57. Shoemaker, D. D., Katju, V., and Jaenike, J. 1999. Wolbachia and the evolution of reproductive isolation between Drosophila recens and Drosophila subquinaria. Evolution 53:1157–1164.CrossRefGoogle Scholar
  58. Toolson, E. C. and Kuper-Simbron, R. 1989. Laboratory evolution of epicuticular hydrocarbon composition and cuticular permeability in Drosophila pseudoobscura: Effects on sexual dimorphism and thermal-acclimation ability. Evolution 43:468–473.CrossRefGoogle Scholar
  59. van Homrigh, A., Higgie, M., McGuigan, K., and Blows, M. W. 2007. The depletion of genetic variance by sexual selection. Curr. Biol. 17:528–532.PubMedCrossRefGoogle Scholar
  60. Wagner, W. 1998. Measuring female mating preferences. Anim. Behav. 55:1029–1042.PubMedCrossRefGoogle Scholar
  61. Wheeler, M. R. 1960. New species of the quinaria group of Drosophila (Diptera, Drosophilidae). Southwest. Nat. 5:160–164.CrossRefGoogle Scholar
  62. Wigglesworth, V. B. 1945. Transpiration through the cuticle of insects. J. Exp. Biol. 21:97–114.Google Scholar
  63. Yew, J. Y., Cody, R. B., and Kravitz, E. A. 2008. Cuticular hydrocarbon analysis of an awake behaving fly using direct analysis in real-time time-of-flight mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 105:7135–7140.PubMedCrossRefGoogle Scholar
  64. Yew, J. Y., Dreisewerd, K., Luftmann, H., Müthing, J., and Kravitz, E. A. 2009. A new male sex-pheromone and novel cuticular cues for chemical communication in Drosophila. Curr. Biol. 19:1245–1254.PubMedCrossRefGoogle Scholar
  65. Yew, J. Y., Dreisewerd, K., de Oliveira, C. C., and Etges, W. J. 2011. Male-specific transfer and fine scale spatial differences of newly identified cuticular hydrocarbons and triacylglycerides in a Drosophila species pair. PLoS One 6:e16898.PubMedCrossRefGoogle Scholar
  66. Zawistowski, S. and Richmond, R. C. 1986. Inhibition of courtship and mating of Drosophila melanogaster by the male-produced lipid, cis-vaccenyl acetate. J. Insect Physiol. 32:189–192.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Sharon Curtis
    • 1
  • Jacqueline L. Sztepanacz
    • 2
    • 4
  • Brooke E. White
    • 3
  • Kelly A. Dyer
    • 3
  • Howard D. Rundle
    • 2
  • Paul Mayer
    • 1
  1. 1.Department of ChemistryUniversity of OttawaOttawaCanada
  2. 2.Department of BiologyUniversity of OttawaOttawaCanada
  3. 3.Department of GeneticsUniversity of GeorgiaAthensUSA
  4. 4.School of Biological SciencesUniversity of QueenslandBrisbaneAustralia

Personalised recommendations