Journal of Chemical Ecology

, Volume 39, Issue 5, pp 630–642 | Cite as

Diel Variation in Fig Volatiles Across Syconium Development: Making Sense of Scents

  • Renee M. BorgesEmail author
  • Jean-Marie Bessière
  • Yuvaraj Ranganathan


Plants produce volatile organic compounds (VOCs) in a variety of contexts that include response to abiotic and biotic stresses, attraction of pollinators and parasitoids, and repulsion of herbivores. Some of these VOCs may also exhibit diel variation in emission. In Ficus racemosa, we examined variation in VOCs released by fig syconia throughout syconium development and between day and night. Syconia are globular enclosed inflorescences that serve as developing nurseries for pollinating and parasitic fig wasps. Syconia are attacked by gallers early in their development, serviced by pollinators in mid phase, and are attractive to parasitoids in response to the development of gallers at later stages. VOC bouquets of the different development phases of the syconium were distinctive, as were their day and night VOC profiles. VOCs such as α-muurolene were characteristic of the pollen-receptive diurnal phase, and may serve to attract the diurnally-active pollinating wasps. Diel patterns of release of volatiles could not be correlated with their predicted volatility as determined by Henry’s law constants at ambient temperatures. Therefore, factors other than Henry’s law constant such as stomatal conductance or VOC synthesis must explain diel variation in VOC emission. A novel use of weighted gene co-expression network analysis (WGCNA) on the volatilome resulted in seven distinct modules of co-emitted VOCs that could be interpreted on the basis of syconium ecology. Some modules were characterized by the response of fig syconia to early galling by parasitic wasps and consisted largely of green leaf volatiles (GLVs). Other modules, that could be characterized by a combination of syconia response to oviposition and tissue feeding by larvae of herbivorous galler pollinators as well as of parasitized wasps, consisted largely of putative herbivore-induced plant volatiles (HIPVs). We demonstrated the usefulness of WGCNA analysis of the volatilome in making sense of the scents produced by the syconia at different stages and diel phases of their development.


Diel variation Diurnal volatiles Fig volatiles Henry’s law constant Herbivore-induced plant volatiles (HIPVs) Nocturnal volatiles Volatilome analysis Weighted gene co-expression network analysis (WGCNA) 



This work was funded by the Department of Biotechnology and the Ministry of Environment and Forests, Government of India. We thank the Indo-French Centre for the Promotion of Advanced Research (IFCPAR) for supporting JMB’s travel. We thank Mahua Ghara, Lakshy Katariya, Anusha Krishnan, and Pratibha Yadav for critical comments on the data analysis.

Supplementary material

10886_2013_280_MOESM1_ESM.doc (598 kb)
ESM 1 (DOC 597 kb)


  1. Balao, F., Herrera, J., Talavera, S., and Dötterl, S. 2011. Spatial and temporal patterns of floral scent emission in Dianthus inoxianus and electroantennographic responses of its hawkmoth pollinator. Phytochemistry 72:601–609.PubMedCrossRefGoogle Scholar
  2. Borges, R. M., Bessière, J.-M., and Hossaert-Mckey, M. 2008. The chemical ecology of seed dispersal in monoecious and dioecious figs. Funct. Ecol. 22:484–493.CrossRefGoogle Scholar
  3. Borges, R. M., Ranganathan, Y., Krishnan, A., Ghara, M., and Pramanik, G. 2011. When should fig fruit produce volatiles? Pattern in a ripening process. Acta Oecol 37:611–618.CrossRefGoogle Scholar
  4. Cook, J. M. and Rasplus, J.-Y. 2003. Mutualists with attitude: coevolving fig wasps and figs. Trends Ecol. Evol. 18:241–248.CrossRefGoogle Scholar
  5. Copolovici, L. O. and Niinemets, U. 2005. Temperature dependencies of Henry’s law constants and octanol/water partition coefficients for key plant volatile monoterpenoids. Chemosphere 61:1390–400.PubMedCrossRefGoogle Scholar
  6. D'Alessandro, M., Brunner, V., von Mérey, G., and Turlings, T. C. J. 2009. Strong attraction of the parasitoid Cotesia marginiventris towards minor volatile compounds of maize. J. Chem. Ecol. 35:999–1008.PubMedCrossRefGoogle Scholar
  7. de Moraes, C. M., Mescher, M. C., and Tumlinson, J. H. 2001. Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410:577–580.PubMedCrossRefGoogle Scholar
  8. Dearden, J. C. and Schüürmann, G. 2003. Quantitative structure–property relationships for predicting Henry’s law constant from molecular structure. Environ. Toxicol. Chem. 22:1755–1770.PubMedCrossRefGoogle Scholar
  9. Dicke, M. and Baldwin, I. T. 2010. The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci 15:167–175.PubMedCrossRefGoogle Scholar
  10. Dicke, M., van Loon, J. J. A., and Soler, R. 2009. Chemical complexity of volatiles from plants induced by multiple attack. Nature Chem. Biol. 5:317–324.CrossRefGoogle Scholar
  11. Dudareva, N. and Pichersky, E. 2000. Biochemical and molecular genetic aspects of floral scents. Plant Physiol. 122:627–634.PubMedCrossRefGoogle Scholar
  12. Dudareva, N., Pichersky, E., and Gershenzon, J. 2004. Biochemistry of plant volatiles. Plant Physiol 135:1893–1902.PubMedCrossRefGoogle Scholar
  13. Dudareva, N., Negre, F., Nagegowda, D. A., and Orlova, I. 2006. Plant volatiles: recent advances and future perspectives. Crit. Rev. Plant Sci. 25:417–440.CrossRefGoogle Scholar
  14. Frost, C. J., Appel, H. M., Carlson, J. E., de Moraes, C. M., Mescher, M. C., and Schultz, J. C. 2007. Within-plant signalling via volatiles overcomes vascular constraints on systemic signalling and primes responses against herbivores. Ecol. Lett. 10:490–498.PubMedCrossRefGoogle Scholar
  15. Galil, J. and Eisikowitch, D. 1968. Flowering cycles and fruit types of Ficus sycomorus in Israel. New Phytol. 67:745–758.CrossRefGoogle Scholar
  16. Ghara, M. and Borges, R. M. 2010. Comparative life-history traits in a fig wasp community: implications for community structure. Ecol. Entomol. 35:139–148.CrossRefGoogle Scholar
  17. Ghara, M., Kundanati, L., and Borges, R. M. 2011. Nature’s Swiss army knives: ovipositor structure mirrors ecology in a multitrophic fig wasp community. PLoS One 6(8):e23642.PubMedCrossRefGoogle Scholar
  18. Gouinguené, S. P. and Turlings, T. C. J. 2002. The effects of abiotic factors on induced volatile emissions in corn plants. Plant Physiol. 129:1296–1307.PubMedCrossRefGoogle Scholar
  19. Grison-Pigé, L., Bessière, J.-M., and Hossaert-Mckey, M. 2002a. Specific attraction of fig-pollinating wasps: role of volatile compounds released by tropical figs. J. Chem. Ecol. 28:283–295.PubMedCrossRefGoogle Scholar
  20. Grison-Pigé, L., Hossaert-Mckey, M., Greeff, J. M., and Bessière, J.-M. 2002b. Fig volatile compounds—a first comparative study. Phytochemistry 61:61–71.PubMedCrossRefGoogle Scholar
  21. Heil, M. and Ton, J. 2008. Long-distance signaling in plant defence. Trends Plant Sci. 13:264–272.PubMedCrossRefGoogle Scholar
  22. Helsper, J. P. F. G., Davies, J. A., Bouwmeester, H. J., Krol, A. F., and van Kampen, M. H. 1998. Circadian rhythmicity in emission of volatile compounds by flowers of Rosa hybrida L. cv. Honesty. Planta 207:88–95.CrossRefGoogle Scholar
  23. Hendel-Rahmanim, K., Masci, T., Vainstein, A., and Weiss, D. 2007. Diurnal regulation of scent emission in rose flowers. Planta 226:1491–1499.PubMedCrossRefGoogle Scholar
  24. Herre, E. A., Jandér, K. C., and Machado, C. A. 2008. Evolutionary ecology of figs and their associates: recent progress and outstanding puzzles. Annu. Rev. Ecol. Evol. Syst. 39:439–458.CrossRefGoogle Scholar
  25. Hilker, M. and Meiners, T. 2011. Plants and insect eggs: How do they affect each other? Phytochemistry 72:1612–1623.PubMedCrossRefGoogle Scholar
  26. Holopainen, J. K. and Gershenzon, J. 2010. Multiple stress factors and the emission of plant VOCs. Trends Plant Sci. 15:176–184.PubMedCrossRefGoogle Scholar
  27. Hossaert-Mckey, M., Soler, C., Schatz, B., and Proffit, M. 2010. Floral scents: their roles in nursery pollination mutualisms. Chemoecology 20:75–88.CrossRefGoogle Scholar
  28. Ibrahim, M. A., Mäenpää, M., Hassinen, V., Kontunen-Soppela, S., Malec, L., Rousi, M., Pietikädnen, L., Tervahauta, A., Kärenlampi, S., Holopainen, J. K., and Oksanen, E. J. 2010. Elevation of night-time temperature increases terpenoid emissions from Betula pendula and Populus tremula. J. Exp. Bot. 61:1583–1595.PubMedCrossRefGoogle Scholar
  29. Kerdelhué, C. and Rasplus, J.-Y. 1996. Non-pollinating Afrotropical fig wasps affect the fig–pollinator mutualism in Ficus within the subgenus Sycomorus. Oikos 75:3–14.CrossRefGoogle Scholar
  30. Kesselmeier, J. and Staudt, M. 1999. Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J. Atmos. Chem. 33:23–88.CrossRefGoogle Scholar
  31. Knudsen, J. T., Eriksson, R., Gershenzon, J., and Stahl, B. 2006. Diversity and distribution of floral scent. Bot. Rev. 72:1–120.CrossRefGoogle Scholar
  32. Krishnan, A., Muralidharan, S., Sharma, L., and Borges, R. M. 2010. A hitchhiker’s guide to a crowded syconium: how do fig nematodes find the right ride? Funct. Ecol. 24:741–749.CrossRefGoogle Scholar
  33. Langfelder, P. and Horvath, S. 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinfo. 9:559.CrossRefGoogle Scholar
  34. Loreto, F. and Schnitzler, J. P. 2010. Abiotic stresses and induced BVOCs. Trends Plant Sci. 15:154–166.PubMedCrossRefGoogle Scholar
  35. Loughrin, J. N., Hamilton-Kemp, T. R., Andersen, R. A., and Hildebrand, D. F. 1990. Volatiles from flowers of Nicotiana sylvestris, N. otophora and Malus × domestica: headspace components and day/night changes in their relative concentrations. Phytochemistry 29:2473–2477.CrossRefGoogle Scholar
  36. Lucas-Barbosa, D., van Loon, J. J. A., and Dicke, M. 2011. The effects of herbivore-induced plant volatiles on interactions between plants and flower-visiting insects. Phytochemistry 72:1647–1654.PubMedCrossRefGoogle Scholar
  37. Matile, P. and Altenburger, R. 1988. Rhythms of fragrance emission in flowers. Planta 174:242–247.CrossRefGoogle Scholar
  38. Meylan, W. M. and Howard, P. H. 2005. Estimating octanol–air partition coefficients with octanol–water partition coefficients and Henry’s law constants. Chemosphere 61:640–644.PubMedCrossRefGoogle Scholar
  39. Morinaga, S. I., Kumano, Y., Ota, A., Yamaoka, R., and Sakai, S. 2009. Day–night fluctuations in floral scent and their effects on reproductive success in Lilium auratum. Popul. Ecol. 51:187–195.CrossRefGoogle Scholar
  40. Nagegowda, D. A., Rhodes, D., and Dudareva, N. 2010. The role of the methyl-erythritol-phosphate (MEP) pathway in rhythmic emission of volatiles, pp. 139–153, in C. A. Rebeiz, C. Benning, H. J. Bohnert, H. Daniell, J. K. Hoober, H. K. Lichtenthaler, A. R. Portis, and B. C. Tripathy (eds.), The Chloroplast: Basics and Application. Springer, Dordrecht.CrossRefGoogle Scholar
  41. Niinemets, U. and Reichstein, M. 2003. Controls on the emission of plant volatiles through stomata: A sensitivity analysis. J. Geophys. Res. 108(D7):4211. doi: 10.1029/2002JD002626.CrossRefGoogle Scholar
  42. Niinemets, U., Loreto, F., and Reichstein, M. 2004. Physiological and physicochemical controls on foliar volatile organic compound emissions. Trends Plant Sci. 9:180–186.PubMedCrossRefGoogle Scholar
  43. Niinemets, U., Monson, R. K., Arneth, A., Ciccioli, P., Kesselmeier, J., Kuhn, U., Noe, S. M., Peñuelas, J., and Staudt, M. 2010. The leaf-level emission factor of volatile isoprenoids: caveats, model algorithms, response shapes and scaling. Biogeosciences 7:1809–1832.CrossRefGoogle Scholar
  44. Noe, S. M., Ciccioli, P., Brancaleoni, E., Loreto, F., and Niinemets, U. 2006. Emissions of monoterpenes linalool and ocimene respond differently to environmental changes due to differences in physico-chemical characteristics. Atmos. Environ. 40:4649–4662.CrossRefGoogle Scholar
  45. Owen, S. M. and Peñuelas, J. 2005. Opportunistic emissions of volatile isoprenoids. Trends Plant Sci 10:420–426.PubMedCrossRefGoogle Scholar
  46. Pichersky, E., Sharkey, T. D., and Gershenzon, J. 2006. Plant volatiles: a lack of function or a lack of knowledge? Trends Plant Sci. 11:421.PubMedCrossRefGoogle Scholar
  47. Proffit, M., Schatz, B., Borges, R. M., and Hossaert-Mckey, M. 2007. Chemical mediation and niche partitioning in non-pollinating fig-wasp communities. J. Anim. Ecol. 76:296–303.PubMedCrossRefGoogle Scholar
  48. Proffit, M., Schatz, B., Bessière, J.-M., Chen, C., Soler, C., and Hossaert-Mckey, M. 2008. Signalling receptivity: comparison of the emission of volatile compounds by figs of Ficus hispida before, during and after the phase of receptivity to pollinators. Symbiosis 45:15–24.Google Scholar
  49. Proffit, M., Chen, C., Soler, C., Bessière, J.-M., Schatz, B., and Hossaert-Mckey, M. 2009. Can chemical signals, responsible for mutualistic partner encounter, promote the specific exploitation of nursery pollination mutualisms?—The case of figs and fig wasps. Entomol. Exp. Appl 131:46–57.CrossRefGoogle Scholar
  50. R Development Core Team 2010. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. URL ISBN 3-900051-07-0.Google Scholar
  51. Raguso, R. A. 2008. Wake up and smell the roses: the ecology and evolution of floral scent. Annu. Rev. Ecol. Evol. Syst. 39:549–569.CrossRefGoogle Scholar
  52. Raguso, R. A., Levin, R. A., Foose, S. E., Holmberg, M. W., and McDADE, L. A. 2003. Fragrance chemistry, nocturnal rhythms and pollination “syndromes” in Nicotiana. Phytochemistry 63:265–284.PubMedCrossRefGoogle Scholar
  53. Ranganathan, Y. and Borges, R. M. 2009. Predatory and trophobiont-tending ants respond differently to fig and fig wasp volatiles. Anim. Behav. 77:1539–1545.CrossRefGoogle Scholar
  54. Ranganathan, Y. and Borges, R. M. 2010. Reducing the babel in plant volatile communication: using the forest to see the trees. Plant Biol. 12:735–742.PubMedCrossRefGoogle Scholar
  55. Ranganathan, Y. and Borges, R. M. 2011. To transform or not to transform: that is the dilemma in the statistical analysis of plant volatiles. Plant Sign. Behav. 6:113–116.CrossRefGoogle Scholar
  56. Ranganathan, Y., Ghara, M., and Borges, R. M. 2010. Temporal associations in fig–wasp–ant interactions: diel and phenological patterns. Entomol. Exp. Appl. 137:50–61.CrossRefGoogle Scholar
  57. Rodriguez-Saona, C. R., Rodriguez-Saona, L. E., and Frost, C. J. 2009. Herbivore-induced volatiles in the perennial shrub, Vaccinium corymbosum, and their role in inter-branch signaling. J. Chem. Ecol. 35:163–175.PubMedCrossRefGoogle Scholar
  58. Sagae, M., Oyama-Okubo, N., Ando, T., Marchesi, E., and Nakayama, M. 2008. Effect of temperature on the floral scent emission and endogenous volatile profile of Petunia axillaris. Biosci. Biotech. Biochem. 72:110–115.CrossRefGoogle Scholar
  59. Snoeren, T. A. L., Mumm, R., Poelman, E. H., Yang, Y., Pichersky, E., and Dicke, M. 2010. The herbivore-induced plant volatile methyl salicylate negatively affects attraction of the parasitoid Diadegma semiclausum. J. Chem. Ecol. 36:479–489.PubMedCrossRefGoogle Scholar
  60. Steeghs, M., Bais, H. P., de Gouw, J., Goldan, P., Kuster, W., Northway, M., Fall, R., and Vivanco, J. M. 2004. Proton-transfer-reaction mass spectrometry as a new tool for real time analysis of root-secreted volatile organic compounds in Arabidopsis. Plant Physiol. 135:47–58.PubMedCrossRefGoogle Scholar
  61. Svensson, G. P., Okamoto, T., Kawakita, A., Goto, R., and Kato, M. 2010. Chemical ecology of obligate pollination mutualisms: testing the ‘private channel’ hypothesis in the BreyniaEpicephala association. New Phytol. 186:995–1004.PubMedCrossRefGoogle Scholar
  62. Theis, N. and Raguso, R. A. 2005. The effect of pollination on floral fragrance in thistles. J. Chem. Ecol. 31:2581–2600.PubMedCrossRefGoogle Scholar
  63. Tholl, D., Sohrabi, R., Huh, J.-H., and LEE, S. 2011. The biochemistry of homoterpenes – Common constituents of floral and herbivore-induced plant volatile bouquets. Phytochemistry 72:1635–1646.PubMedCrossRefGoogle Scholar
  64. Weston, D. J., Gunter, L. E., Rogers, A., and Wullschleger, S. D. 2008. Connecting genes, coexpression modules, and molecular signatures to environmental stress phenotypes in plants. BMC Systems Biol. 2:16.CrossRefGoogle Scholar
  65. Wilkinson, M. J., Owen, S. M., Possell, M., Hartwell, J., Gould, P., Hall, A., Vickers, C., and Hewitt, C. N. 2006. Circadian control of isoprene emissions from oil palm (Elaeis guineensis). Plant J. 47:960–968.PubMedCrossRefGoogle Scholar
  66. Zhang, B. and Horvath, S. 2005. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 4: Article 17.Google Scholar
  67. Zhang, S., Wei, J., Guo, X., Liu, T-X., and Kang, L. 2010. Functional synchronization of biological rhythms in a tritrophic system. PLoS One 5(6):e11064. doi: 10.1371/journal.pone.0011064.

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Renee M. Borges
    • 1
    Email author
  • Jean-Marie Bessière
    • 2
  • Yuvaraj Ranganathan
    • 1
  1. 1.Centre for Ecological SciencesIndian Institute of ScienceBangaloreIndia
  2. 2.Ecole Nationale Supérieure de Chimie de MontpellierMontpellier Cedex 5France

Personalised recommendations