Journal of Chemical Ecology

, Volume 39, Issue 4, pp 559–568 | Cite as

A Male-Predominant Cuticular Hydrocarbon, 7-Methyltricosane, is used as a Contact Pheromone in the Western Flower Thrips Frankliniella occidentalis

  • Oladele A. Olaniran
  • Akella V. S. Sudhakar
  • Falko P. Drijfhout
  • Ian A. N. Dublon
  • David R. Hall
  • James G. C. Hamilton
  • William D. J. KirkEmail author


In a laboratory bioassay, adult female Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) spent more time near filter paper disks that had been exposed to adult males than near unexposed disks; this effect was not observed on disks exposed to adult females. The response could only partly be explained by the known male-produced aggregation pheromone, neryl (S)-2-methylbutanoate, suggesting the presence of an unknown male-produced compound. In gas chromatography/mass spectrometry analyses, 7-methyltricosane was detected on disks exposed to males, but not on disks exposed to females. Extracts of cuticular lipids also showed relatively large amounts of 7-methyltricosane on males, whereas only trace amounts were found on females and none on larvae. Bioassays of synthetic 7-methyltricosane showed that adults responded only after contact. The response to this compound was clearly different from that to n-tricosane or hexane-only controls. Females that contacted 7-methyltricosane on glass beads stayed in the vicinity and frequently raised the abdomen, a behavior that rejects mating attempts by males. Males stayed in the vicinity and wagged the abdomen sideways, a behavior used in fighting between males. This is the first identification of a contact pheromone in the order Thysanoptera.


Thysanoptera Thripidae Neryl (S)-2-methylbutanoate Mating behavior Fighting behavior Video tracking 



Oladele Olaniran thanks the Education Trust Fund, Nigeria and Ladoke Akintola University of Technology, Ogbomoso, Nigeria for providing a training fellowship. Akella Sudhakar acknowledges the support of the European Union under a Marie Curie International Incoming Fellowship (Project No: 252258, Project Acronym: PERFECT). David Hall was funded by Defra Horticultural LINK Project HL 01107. We thank Dudley Farman (NRI) for preparing filter disks and running the GC/MS analyses of exposed disks.


  1. Ablard, K., Gries, R., Khaskin, G., Schaefer, P. W., and Gries, G. 2012. Does the stereochemistry of methylated cuticular hydrocarbons contribute to mate recognition in the egg parasitoid wasp Ooencyrtus kuvanae? J. Chem. Ecol. 38:1306–1317.PubMedCrossRefGoogle Scholar
  2. Abramson, J. H. 2011. WINPEPI updated: Computer programs for epidemiologists, and their teaching potential. Epidemiol. Perspect. Innov. 8:1–9.PubMedCrossRefGoogle Scholar
  3. Bagnères, A.-G. and Blomquist, G. J. 2010. Site of synthesis, mechanism of transport and selective deposition of hydrocarbons, pp. 75–99, in G. J. Blomquist and A.-G. Bagnères (eds.), Insect Hydrocarbons. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  4. Blomquist, G. J. and Bagnères, A.-G. 2010. Insect Hydrocarbons. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  5. Dublon, I. A. N. 2009. The Aggregation Pheromone of the Western Flower Thrips. PhD dissertation, Keele University, UK.Google Scholar
  6. El-Ghariani, I. M. and Kirk, W. D. J. 2008. The structure of the male sternal glands of the western flower thrips, Frankliniella occidentalis (Pergande). Acta Phytopathol. Entomol. Hung. 43:257–266.CrossRefGoogle Scholar
  7. Ellington, C. P. 1980. Wing mechanics and take off preparation of Thrips (Thysanoptera). J. Exp. Biol. 85:129–136.Google Scholar
  8. Everaerts, C., Farine, J.-P., Cobb, M., and Ferveur, J.-F. 2010. Drosophila cuticular hydrocarbons revisited: Mating status alters cuticular profiles. PLoS One 5:e9607.PubMedCrossRefGoogle Scholar
  9. Gołębiowski, M., Maliński, E., Nawrot, J., Szafranek, J., and Stepnowski, P. 2007. Identification of the cuticular lipid composition of the western flower thrips Frankliniella occidentalis. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 147:288–292.PubMedCrossRefGoogle Scholar
  10. Grenacher, S. and Guerin, P. M. 1994. Inadvertent introduction of squalene, cholesterol, and other skin products into a sample. J. Chem. Ecol. 20:3017–3025.CrossRefGoogle Scholar
  11. Hamilton, J. G. C., Hall, D. R., and Kirk, W. D. J. 2005. Identification of a male-produced aggregation pheromone in the western flower thrips Frankliniella occidentalis. J. Chem. Ecol. 31:1369–1379.PubMedCrossRefGoogle Scholar
  12. Hedrick, T. L. 2008. Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systems. Bioinspir. Biomim. 3:034001.PubMedCrossRefGoogle Scholar
  13. Hemptinne, J. L., Lognay, G., and Dixon, A. F. G. 1998. Mate recognition in the two-spot ladybird beetle, Adalia bipunctata: Role of chemical and behavioural cues. J. Insect Physiol. 44:1163–1171.CrossRefGoogle Scholar
  14. Howard, R. W. and Blomquist, G. J. 2005. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu. Rev. Entomol. 50:371–393.PubMedCrossRefGoogle Scholar
  15. Jones, T. M. and Hamilton, J. G. C. 1998. A role for pheromones in mate choice in a lekking sandfly. Anim. Behav. 56:891–898.PubMedCrossRefGoogle Scholar
  16. Kirk, W. D. J. and Hamilton, J. G. C. 2010. The aggregation pheromones of thrips. (Abstract, IXth International Symposium on Thysanoptera and Tospoviruses, 31 August–4 September, 2009). J. Insect Sci. 10(166):19–20.Google Scholar
  17. Kirk, W. D. J. and Terry, L. I. 2003. The spread of the western flower thrips Frankliniella occidentalis (Pergande). Agric. For. Entomol. 5:301–310.CrossRefGoogle Scholar
  18. Lacaille, F., Hiroi, M., Twele, R., Inoshita, T., Umemoto, D., Manière, G., Marion-Poll, F., Ozaki, M., Francke, W., Cobb, M., Everaerts, C., Tanimura, T., and Ferveur, J.-F. 2007. An inhibitory sex pheromone tastes bitter for Drosophila males. PLoS One 2:e661.PubMedCrossRefGoogle Scholar
  19. Lewis, T. 1997. Thrips as Crop Pests. CAB International, Wallingford.Google Scholar
  20. Macdonald, K. M., Hamilton, J. G. C., Jacobson, R., and Kirk, W. D. J. 2003. Analysis of anal droplets of the western flower thrips Frankliniella occidentalis. J. Chem. Ecol. 29:2385–2389.PubMedCrossRefGoogle Scholar
  21. Mound, L. A. 2009. Sternal pore plates (glandular areas) of male Thripidae (Thysanoptera). Zootaxa 2129:29–46.Google Scholar
  22. Rutledge, C. E., Millar, J. G., Romero, C. M., and Hanks, L. M. 2009. Identification of an important component of the contact sex pheromone of Callidiellum rufipenne (Coleoptera: Cerambycidae). Environ. Entomol. 38:1267–1275.PubMedCrossRefGoogle Scholar
  23. Takakura, K. I. 2009. Reconsiderations on evaluating methodology of repellent effects: Validation of indices and statistical analyses. J. Econ. Entomol. 102:1977–1984.PubMedCrossRefGoogle Scholar
  24. Terry, L. I. and Gardner, D. 1990. Male mating swarms in Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). J. Insect Behav. 3:133–141.CrossRefGoogle Scholar
  25. Terry, I. and Schneider, M. 1993. Copulatory behaviour and mating frequency of the western flower thrips, Frankliniella occidentalis (Insecta: Thysanoptera). Zool. (J. Pure Appl. Zool.) 4:339–354.Google Scholar
  26. Webster, K. W., Cooper, P., and Mound, L. A. 2006. Studies on Kelly’s citrus thrips, Pezothrips kellyanus (Bagnall) (Thysanoptera: Thripidae): Sex attractants, host associations and country of origin. Aust. J. Entomol. 45:67–74.CrossRefGoogle Scholar
  27. Widemo, F. and Johansson, B. G. 2006. Male-male pheromone signalling in a lekking Drosophila. Proc. R. Soc. Lond. B Biol. Sci. 273:713–717.CrossRefGoogle Scholar
  28. Wright, S. P. 1992. Adjusted P-values for simultaneous inference. Biometrics 48:1005–1013.CrossRefGoogle Scholar
  29. Xiao, Y.-H., Zhang, J.-X., and Li, S.-Q. 2010. Male-specific (Z)-9-tricosene stimulates female mating behaviour in the spider Pholcus beijingensis. Proc. R. Soc. Lond. B Biol. Sci. 277:3009–3018.CrossRefGoogle Scholar
  30. Zhang, P.-J., Zhu, X.-Y., and Lu, Y.-B. 2011. Behavioural and chemical evidence of a male-produced aggregation pheromone in the flower thrips Frankliniella intonsa. Physiol. Entomol. 36:317–320.CrossRefGoogle Scholar
  31. Zhao, C.-Y., He, Y.-R., Zhong, F., Gao, Y., Qi, G.-J., Shao, X.-Y., and Lv, L.-H. 2011. Analysis of cuticular hydrocarbons of Frankliniella occidentalis. Chin. J. Appl. Entomol. 48:536–541.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Oladele A. Olaniran
    • 1
  • Akella V. S. Sudhakar
    • 1
  • Falko P. Drijfhout
    • 2
  • Ian A. N. Dublon
    • 1
    • 4
  • David R. Hall
    • 3
  • James G. C. Hamilton
    • 1
  • William D. J. Kirk
    • 1
    Email author
  1. 1.Centre for Applied Entomology and Parasitology, School of Life SciencesKeele UniversityStaffordshireUK
  2. 2.School of Physical and Geographical SciencesKeele UniversityStaffordshireUK
  3. 3.Natural Resources InstituteUniversity of GreenwichKentUK
  4. 4.Department of Plant Protection Biology, Division of Chemical EcologySwedish University of Agricultural SciencesAlnarpSweden

Personalised recommendations