Advertisement

Journal of Chemical Ecology

, Volume 39, Issue 4, pp 465–480 | Cite as

A Pharm-Ecological Perspective of Terrestrial and Aquatic Plant-Herbivore Interactions

  • Jennifer Sorensen Forbey
  • M. Denise Dearing
  • Elisabeth M. Gross
  • Colin M. Orians
  • Erik E. Sotka
  • William J. Foley
Review Article

Abstract

We describe some recent themes in the nutritional and chemical ecology of herbivores and the importance of a broad pharmacological view of plant nutrients and chemical defenses that we integrate as “Pharm-ecology”. The central role that dose, concentration, and response to plant components (nutrients and secondary metabolites) play in herbivore foraging behavior argues for broader application of approaches derived from pharmacology to both terrestrial and aquatic plant-herbivore systems. We describe how concepts of pharmacokinetics and pharmacodynamics are used to better understand the foraging phenotype of herbivores relative to nutrient and secondary metabolites in food. Implementing these concepts into the field remains a challenge, but new modeling approaches that emphasize tradeoffs and the properties of individual animals show promise. Throughout, we highlight similarities and differences between the historic and future applications of pharm-ecological concepts in understanding the ecology and evolution of terrestrial and aquatic interactions between herbivores and plants. We offer several pharm-ecology related questions and hypotheses that could strengthen our understanding of the nutritional and chemical factors that modulate foraging behavior of herbivores across terrestrial and aquatic systems.

Keywords

Aquatic Herbivore Nutrient Pharmacology Plant secondary metabolite Terrestrial NIRS Foraging 

Notes

Acknowledgments

We thank Randi Rotjan and Joshua Idjadi and four anonymous reviewers for comments that improved the manuscript and Kathy Smith for assistance with formatting the manuscript. We thank the National Science Foundation (0827239 to JSF) for funding the Pharm-Ecology Symposium at the Society for Integrative and Comparative Biology 2010 that stimulated many of the ideas in this manuscript. We also thank National Science Foundation Grant IOS-0817527 and DEB-1146194 to MDD and JSF, respectively, the Australian Research Council Discovery Grant DP0986142 to WJF, the German Science Foundation DFG, CRC454 project A2 to EMG, and the National Research Initiative of the USDA National Institute of Food and Agriculture 2007-35302-18351 to CMO.

References

  1. Adams, M. D., Celniker, S. E., Holt, R. A., Evans, C. A., Gocayne, J. D., Amanatides, P. G., et al. 2000. The genome sequence of Drosophila melanogaster. Science 287:2185–2195.PubMedCrossRefGoogle Scholar
  2. Amsler, C. D. 2008. Algal Chemical Ecology. Springer, Berlin.CrossRefGoogle Scholar
  3. Andrew, R. L., Peakall, R., Wallis, I. R., and Foley, W. J. 2007. Spatial distribution of defense chemicals and markers and the maintenance of chemical variation. Ecology 88:716–728.PubMedCrossRefGoogle Scholar
  4. Appel, H. M. 1993. The insect gut lumen: Physiochemistry and impact on plant allelochemicals and nutrients, pp 209–223, in E. A. Bernays (ed.), Insect-Plant Interactions. CRC Press, Inc.Google Scholar
  5. Appel, H. M. and Schultz, J. C. 1994. Oak tannins reduce effectiveness of thuricide (Bacillus thuringiensis) in the gypsy-moth (Lepidoptera, Lymantriidae). J. Econ. Entomol. 87:1736–1742.Google Scholar
  6. Asselman, J., Glaholt, S. P., Smith, Z., Smagghe, G., Janssen, C. R., Colbourne, J. K., et al. 2012. Functional characterization of four metallothionein genes in Daphnia pulex exposed to environmental stressors. Aquat. Toxicol. 110:54–65.PubMedCrossRefGoogle Scholar
  7. Aucoin, R., Guillet, G., Murray, C., Philogene, B. J. R., and Arnason, J. T. 1995. How do insect herbivores cope with the extreme oxidative stress of phototoxic host plants. Arch. Insect Biochem. Physiol. 29:211–226.CrossRefGoogle Scholar
  8. Barbehenn, R. V. and Constabel, C. P. 2011. Tannins in plant-herbivore interactions. Phytochemistry 72:1551–1565.PubMedCrossRefGoogle Scholar
  9. Barboza, P., Parker, K., and Hume, I. 2009. Integrative Wildlife Nutrition. Springer, Berlin.CrossRefGoogle Scholar
  10. Behmer, S. T. 2009. Insect herbivore nutrient regulation. Annu. Rev. Entomol. 54:165–187.PubMedCrossRefGoogle Scholar
  11. Behmer, S. T., Simpson, S. J., and Raubenheimer, D. 2002. Herbivore foraging in chemically heterogeneous environments: Nutrients and secondary metabolites. Ecology 83:2489–2501.CrossRefGoogle Scholar
  12. Bernays, E. A., Bright, K. L., Gonzalez, N., and Angel, J. 1994. Dietary mixing in a generalist herbivore - tests of 2 hypotheses. Ecology 75:1997–2006.CrossRefGoogle Scholar
  13. Bidart-Bouzat, M. G. and Imeh-Nathaniel, A. 2008. Global change effects on plant chemical defenses against insect herbivores. J. Integr. Plant Biol. 50:1339–1354.PubMedCrossRefGoogle Scholar
  14. Boyle, R. R., McLean, S., Brandon, S., and Wiggins, N. 2005. Rapid absorption of dietary 1,8-cineole results in critical blood concentration of cineole and immediate cessation of eating in the common brushtail possum (Trichosurus vulpecula). J. Chem. Ecol. 31:2775–2790.PubMedCrossRefGoogle Scholar
  15. Bozinovic, F. and Novoa, F. F. 1997. Metabolic costs of rodents feeding on plant chemical defenses: A comparison between an herbivore and an omnivore. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 117:511–514.CrossRefGoogle Scholar
  16. Broderick, N., Raffa, K., Goodman, R., and Handelsman, J. 2004. Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods. Appl. Environ. Microbiol. 70:293–300.PubMedCrossRefGoogle Scholar
  17. Browning, S. L., Tarekegn, A., Bekele, E., Bradman, N., and Thomas, M. G. 2010. CYP1A2 is more variable than previously thought: A genomic biography of the gene behind the human drug-metabolizing enzyme. Pharmacogenet. Genomics 20:647–664.PubMedCrossRefGoogle Scholar
  18. Brunet, M., Arnaud, J., and Mazza, J. 1994. Gut structure and digestive cellular processes in marine Crustacea. Oceanogr. Mar. Biol. 32:335–367.Google Scholar
  19. Casarett, L. J., Doull, J., and Klaassen, C. D. 2008. Casarett and Doull's Toxicology: The Basic Science of Poisons. McGraw-Hill, New York, NY.Google Scholar
  20. Caviedes-Vidal, E., McWhorter, T. J., Lavin, S. R., Chediack, J. G., Tracy, C. R., and Karasov, W. H. 2007. The digestive adaptation of flying vertebrates: High intestinal paracellular absorption compensates for smaller guts. Proc. Natl. Acad. Sci. U. S. A. 104:19132–19137.PubMedCrossRefGoogle Scholar
  21. Chambers, J. E. and Yarbrough, J. D. 1976. Xenobiotic biotransformation systems in fishes. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 55:77–84.CrossRefGoogle Scholar
  22. Chandler, S. M., Wilkinson, T. L., and Douglas, A. E. 2008. Impact of plant nutrients on the relationship between a herbivorous insect and its symbiotic bacteria. Proc. R. Soc. Lond. B Biol. Sci. 275:565–570.CrossRefGoogle Scholar
  23. Chen, Y. H., Guo, Q. S., Liu, L., Liao, L., and Zhu, Z. B. 2011. Influence of fertilization and drought stress on the growth and production of secondary metabolites in Prunella vulgaris L. J. Med. Plant Res. 5:1749–1755.Google Scholar
  24. Choat, J. H. and Clements, K. D. 1998. Vertebrate herbivores in marine and terrestrial environments: A nutritional ecology perspective. Annu. Rev. Ecol. Syst. 29:375–403.CrossRefGoogle Scholar
  25. Clark, E. L., Karley, A. J., and Hubbard, S. F. 2010. Insect endosymbionts: Manipulators of insect herbivore trophic interactions? Protoplasma 244:25–51.PubMedCrossRefGoogle Scholar
  26. Clements, K. D., Raubenheimer, D., and Choat, J. H. 2009. Nutritional ecology of marine herbivorous fishes: Ten years on. Funct. Ecol. 23:79–92.CrossRefGoogle Scholar
  27. Colbourne, J. K., Pfrender, M. E., Gilbert, D., Thomas, W. K., Tucker, A., Oakley, T. H., et al. 2011. The ecoresponsive genome of Daphnia pulex. Science 331:555–561.PubMedCrossRefGoogle Scholar
  28. Cruz-Rivera, E. and Hay, M. E. 2003. Prey nutritional quality interacts with chemical defenses to affect consumer feeding and fitness. Ecol. Monogr. 73:483–506.CrossRefGoogle Scholar
  29. Dearing, M. D. 2012. Temperature-dependent toxicity in mammals with implications for herbivores: A review. J. Comp. Physiol. B, Biochem. Syst. Environ. Physiol. 183:43–50.PubMedGoogle Scholar
  30. Dearing, M. D., Mangione, A. M., and Karasov, W. H. 2000. Diet breadth of mammalian herbivores: Nutrient versus detoxification constraints. Oecologia 123:397–405.CrossRefGoogle Scholar
  31. Dearing, M. D., Mangione, A. M., and Karasov, W. H. 2002. Ingestion of plant secondary compounds causes diuresis in desert herbivores. Oecologia 130:576–584.CrossRefGoogle Scholar
  32. Dearing, M. D., Foley, W. J., and McLean, S. 2005. The influence of plant secondary metabolites on the nutritional ecology of herbivorous terrestrial vertebrates. Annu. Rev. Ecol. Evol. Syst. 36:169–189.CrossRefGoogle Scholar
  33. Dearing, M. D., Forbey, J. S., McLister, J. D., and Santos, L. 2008. Ambient temperature influences diet selection and physiology of an herbivorous mammal, Neotoma albigula. Physiol. Biochem. Zool. 81:891–897.PubMedCrossRefGoogle Scholar
  34. Degabriel, J., Foley, W. J., and Wallis, I. R. 2002. The effect of excesses and deficiencies in amino acids on the feeding behaviour of the common brushtail possum (Trichosurus vulpecula). J. Comp. Physiol. B, Biochem. Syst. Environ. Physiol. 172:607–617.PubMedCrossRefGoogle Scholar
  35. Degabriel, J. L., Moore, B. D., Foley, W. J., and Johnson, C. N. 2009. The effects of plant defensive chemistry on nutrient availability predict reproductive success in a mammal. Ecology 90:711–719.PubMedCrossRefGoogle Scholar
  36. Demott, W. R. 1999. Foraging strategies and growth inhibition in five daphnids feeding on mixtures of a toxic cyanobacterium and a green alga. Freshw. Biol. 42:263–274.CrossRefGoogle Scholar
  37. Derby, C. D. and Sorensen, P. W. 2008. Neural processing, perception, and behavioral responses to natural chemical stimuli by fish and crustaceans. J. Chem. Ecol. 34:898–914.PubMedCrossRefGoogle Scholar
  38. Dobler, S., Petschenka, G., and Pankoke, H. 2011. Coping with toxic plant compounds - the insect's perspective on iridoid glycosides and cardenolides. Phytochemistry 72:1593–1604.PubMedCrossRefGoogle Scholar
  39. Duffy, J. E. and Paul, V. J. 1992. Prey nutritional quality and the effectiveness of chemical defenses against tropical reef fishes. Oecologia 90:333–339.CrossRefGoogle Scholar
  40. Duncan, A. J., Elwert, C., Villalba, J. J., Yearsley, J., Pouloupoulou, I., and Gordon, I. J. 2007. How does pattern of feeding and rate of nutrient delivery influence conditioned food preferences? Oecologia 153:617–624.PubMedCrossRefGoogle Scholar
  41. Dziba, L. E., Hall, J. O., and Provenza, F. D. 2006. Feeding behavior of lambs in relation to kinetics of 1,8-cineole dosed intravenously or into the rumen. J. Chem. Ecol. 32:391–408.PubMedCrossRefGoogle Scholar
  42. Erhard, D., Pohnert, G., and Gross, E. M. 2007. Chemical defense in Elodea nuttallii reduces feeding and growth of aquatic herbivorous Lepidoptera. J. Chem. Ecol. 33:1646–1661.PubMedCrossRefGoogle Scholar
  43. Eyckmans, M., Benoot, D., van Raemdonck, G. A. A., Zegels, G., van Ostade, X. W. M., Witters, E., et al. 2012. Comparative proteomics of copper exposure and toxicity in rainbow trout, common carp and gibel carp. Comp. Biochem. Physiol. D Genomics Proteomics 7:220–232.CrossRefGoogle Scholar
  44. Fanson, B. G., Weldon, C. W., Perez-Staples, D., Simpson, S. J., and Taylor, P. W. 2009. Nutrients, not caloric restriction, extend lifespan in queensland fruit flies (Bactrocera tryoni). Aging Cell 8:514–523.PubMedCrossRefGoogle Scholar
  45. Favreau, A., Baumont, R., Duncan, A. J., and Ginane, C. 2010. Sheep use preingestive cues as indicators of postingestive consequences to improve food learning. J. Anim. Sci. 88:1535–1544.PubMedCrossRefGoogle Scholar
  46. Felton, A. M., Felton, A., Raubenheimer, D., Simpson, S. J., Foley, W. J., Wood, J. T., et al. 2009. Protein content of diets dictates the daily energy intake of a free-ranging primate. Behav. Ecol. 20:685–690.CrossRefGoogle Scholar
  47. Field, K., Bachmanov, A., Mennella, J., Beauchamp, G., and Kimball, B. 2009. Protein hydrolysates are avoided by herbivores but not by omnivores in two-choice preference tests. PLoS One 4:E4126.PubMedCrossRefGoogle Scholar
  48. Foley, W. and McArthur, C. 1994. The effects and costs of ingested allelochemicals in mammals: An ecological perspective, pp. 370–391, in D. Chivers and P. Langer (eds.), The Digestive System in Mammals: Food, Form and Function. Cambridge University Press, Cambridge.Google Scholar
  49. Foley, W. J., McLean, S., and Cork, S. J. 1995. The effects of plant allelochemicals on acid–base metabolism; the final common pathway. J. Chem. Ecol. 21:721–743.CrossRefGoogle Scholar
  50. Foley, W. J., McIlwee, A., Lawler, I., Aragones, L., Woolnough, A. P., and Berding, N. 1998. Ecological applications of near infrared reflectance spectroscopy a tool for rapid, cost-effective prediction of the composition of plant and animal tissues and aspects of animal performance. Oecologia 116:293–305.CrossRefGoogle Scholar
  51. Foley, W., Iason, G., and McArthur, C. 1999. Role of plant secondary metabolites in the nutritional ecology of mammalian herbivores - how far have we come in 25 years? pp. 203–274, in H. J. Jung and G. Fahey (eds.), International Symposium on the Nutrition of Herbivores. American Society of Animal Science, Savoy IL.Google Scholar
  52. Forbey, J. S., Harvey, A. L., Huffman, M. A., Provenza, F. D., Sullivan, R., and Tasdemir, D. 2009. Exploitation of secondary metabolites by animals: A response to homeostatic challenges. Integr. Comp. Biol. 49:314–328.PubMedCrossRefGoogle Scholar
  53. Forbey, J. S., Pu, X. Z., Xu, D., Kielland, K., and Bryant, J. 2011. Inhibition of snowshoe hare succinate dehydrogenase activity as a mechanism of deterrence for papyriferic acid in birch. J. Chem. Ecol. 37:1285–1293.PubMedCrossRefGoogle Scholar
  54. Fraser, M. J. 2012. Insect transgenesis: Current applications and future prospects, pp. 267–289, in M. R. Berenbaum (ed.), Annu. Rev. of Entomol. Annual Reviews, Palo Alto.Google Scholar
  55. Freeland, W. J. and Janzen, D. H. 1974. Strategies in herbivory by mammals: The role of plant secondary compounds. Am. Nat. 108:269–289.CrossRefGoogle Scholar
  56. Freese, H. M. and Schink, B. 2011. Composition and stability of the microbial community inside the digestive tract of the aquatic crustacean Daphnia magna. Microb. Ecol. 62:882–894.PubMedCrossRefGoogle Scholar
  57. Frey, J., Pell, A., Berthiaume, R., Lapierre, H., Lee, S., Ha, J., et al. 2010. Comparative studies of microbial populations in the rumen, duodenum, ileum and faeces of lactating dairy cows. J. Appl. Microbiol. 108:1982–1993.PubMedGoogle Scholar
  58. Frye, G. G., Connelly, J. W., Musil, D. D., and Forbey, J. F. 2013. Phytochemistry predicts habitat selection by an avaian herbivore at multiple spatial scales. Ecology 92:308–314.Google Scholar
  59. Fu, P. P., Xia, Q. S., Lin, G., and Chou, M. W. 2004. Pyrrolizidine alkaloids - genotoxicity, metabolism enzymes, metabolic activation, and mechanisms. Drug Metab. Rev. 36:1–55.PubMedCrossRefGoogle Scholar
  60. Ganguly, S. and Prasad, A. 2011. Microflora in fish digestive tract plays significant role in digestion and metabolism. Rev. Fish Biol. Fish. 22:11–16.CrossRefGoogle Scholar
  61. Ginane, C., Duncan, A. J., Young, S. A., Elston, D. A., and Gordon, I. J. 2005. Herbivore diet selection in response to simulated variation in nutrient rewards and plant secondary compounds. Anim. Behav. 69:541–550.CrossRefGoogle Scholar
  62. Glenn, A. E., Karagianni, E. P., Ulndreaj, F., and Boukouvala, S. 2010. Comparative genomic and phylogenetic investigation of the xenobiotic metabolizing arylamine n-acetyltransferase enzyme family. FEBS Lett. 584:3158–3164.PubMedCrossRefGoogle Scholar
  63. Govenor, H. L., Schultz, J. C., and Appel, H. M. 1997. Impact of dietary allelochemicals on gypsy moth (Lymantria dispar) caterpillars: Importance of midgut alkalinity. J. Insect Physiol. 43:1169–1175.PubMedCrossRefGoogle Scholar
  64. Gross, E. and Bakker, E. 2012. The role of plant secondary metabolites in freshwater macrophyte-herbivore interactions: Limited or unexplored chemical defences? pp. 154–169, in G. Iason, M. Dicke, and S. Hartley (eds.), The Integrative Role of Plant Secondary Metabolites in Ecological Systems. British Ecological Society/Cambridge University Press, Sussex, UK.Google Scholar
  65. Gross, E. M., Brune, A., and Walenciak, O. 2008. Gut pH, redox conditions and oxygen levels in an aquatic caterpillar: Potential effects on the fate of ingested tannins. J. Insect Physiol. 54:462–471.PubMedCrossRefGoogle Scholar
  66. Guan, S., He, J. W., Young, J. C., Zhu, H. H., Li, X. Z., Ji, C., et al. 2009. Transformation of trichothecene mycotoxins by microorganisms from fish digesta. Aquaculture 290:290–295.CrossRefGoogle Scholar
  67. Guillet, G., Harmatha, J., Waddell, T. G., Philogene, B. J. R., and Arnason, J. T. 2000. Synergistic insecticidal mode of action between sesquiterpene lactones and a phototoxin, alpha-terthienyl. Photochem. Photobiol. 71:111–115.PubMedCrossRefGoogle Scholar
  68. Gustafsson, S. and Hansson, L. A. 2004. Development of tolerance against toxic cyanobacteria in Daphnia. Aquat. Ecol. 38:37–44.CrossRefGoogle Scholar
  69. Haley, S. L., Lamb, J. G., Franklin, M. R., Constance, J. E., and Dearing, M. D. 2008. "Pharm-ecology" of diet shifting: Biotransformation of plant secondary compounds in creosote (Larrea tridentata) by a woodrat herbivore, Neotoma lepida. Physiol. Biochem. Zool. 81:584–593.PubMedCrossRefGoogle Scholar
  70. Hay, M. E. and Fenical, W. 1988. Marine plant-herbivore interactions - the ecology of chemical defense. Annu. Rev. Ecol. Syst. 19:111–145.CrossRefGoogle Scholar
  71. Hay, M. E., Duffy, J. E., Pfister, C. A., and Fenical, W. 1987. Chemical defense against different marine herbivores: Are amphipods insect equivalents? Ecology 68:1567–1580.CrossRefGoogle Scholar
  72. Hay, K. B., Millers, K. A., Poore, A. G. B., and Lovelock, C. E. 2010. The use of near infrared reflectance spectrometry for characterization of brown algal tissue1. J. Phycol. 46:937–946.CrossRefGoogle Scholar
  73. He, L., Zhang, Z., Xie, C., Hao, B., Wang, C., and He, G. 2009. Isolation of cellulose-producing microbes from the intestine of grass carp (Ctenopharyngodon idellus). Environ. Biol. Fish 86:131–135.CrossRefGoogle Scholar
  74. Holzinger, F. and Wink, M. 1996. Mediation of cardiac glycoside insensitivity in the monarch butterfly (Danaus plexippus): Role of an amino acid substitution in the ouabain binding site of Na+, K + −ATPase. J. Chem. Ecol. 22:1921–1937.Google Scholar
  75. Hooper, L. V. and Macpherson, A. J. 2010. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat. Rev. Immunol. 10:159–169.PubMedCrossRefGoogle Scholar
  76. Horn, M. H. 1989. Biology of marine herbivorous fishes. Oceanogr. Mar. Biol. Annu. Rev. 27:641–664.Google Scholar
  77. Hu, S. Y., Wang, H. Y., Knisely, A. A., Reddy, S., Kovacevic, D., Liu, Z., et al. 2008. Evolution of the CYP2ABFGST gene cluster in rat, and a fine-scale comparison among rodent and primate species. Genetica 133:215–226.PubMedCrossRefGoogle Scholar
  78. Huang, T. F., Jander, G., and de Vos, M. 2011. Non-protein amino acids in plant defense against insect herbivores: Representative cases and opportunities for further functional analysis. Phytochemistry 72:1531–1537.PubMedCrossRefGoogle Scholar
  79. Hunter, M. D. and Schultz, J. C. 1993. Induced plant defenses breached - phytochemical induction protects an herbivore from disease. Oecologia 94:195–203.CrossRefGoogle Scholar
  80. Hyne, R. V. and Maher, W. A. 2003. Invertebrate biomarkers: Links to toxicosis that predict population decline. Ecotoxicol. Environ. Saf. 54:366–374.PubMedCrossRefGoogle Scholar
  81. Ibelings, B. W. and Havens, K. E. 2008. Cyanobacterial toxins: A qualitative meta-analysis of concentrations, dosage and effects in freshwater, estuarine and marine biota, pp. 675–732, in Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs, Springer, New York.Google Scholar
  82. Itokawa, K., Komagata, O., Kasai, S., Okamura, Y., Masada, M., and Tomita, T. 2010. Genomic structures of CYP9M10 in pyrethroid resistant and susceptible strains of Culex quinquefasciatus. Insect Biochem. Mol. Biol. 40:631–640.PubMedCrossRefGoogle Scholar
  83. Janson, E. M., Stireman, J. O., Singer, M. S., and Abbot, P. 2008. Phytophagous insect-microbe mutualisms and adaptive evolutionary diversification. Evolution 62:997–1012.PubMedCrossRefGoogle Scholar
  84. Jensen, K., Mayntz, D., Toft, S., Raubenheimer, D., and Simpson, S. J. 2011. Nutrient regulation in a predator, the wolf spider Pardosa prativaga. Anim. Behav. 81:993–999.CrossRefGoogle Scholar
  85. Jones, R. J. and Megarrity, R. G. 1986. Successful transfer of DHP-degrading bacteria from hawaiian goats to australian ruminants to overcome the toxicity of Leucaena. Aust. Vet. J. 63:259–262.PubMedCrossRefGoogle Scholar
  86. Karasov, W. and Hume, I. 1997. Vertebrate gastrointestinal system, pp. 407–480, in W. Dantzler (ed.), Handbook of Comparative Physiology. American Physiological Society, Bethesda.Google Scholar
  87. Karasov, W. and Martínez Del Rio, C. 2007. Physiological Ecology: How Animals Process Energy, Nutrients, and Toxins. Princeton University Press, Princeton.Google Scholar
  88. Katagi, T. 2010. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms. Rev. Environ. Contam. Toxicol. 204:1–132.PubMedCrossRefGoogle Scholar
  89. Keeley, L. L. 1985. Biochemistry and physiology of the insect fat body, pp. 211–228, in G. A. Kerkut and L. I. Gilbert (eds.), Comprehensive Insect Physiology, Biochemistry and Pharmacology. Pergamon, New York.Google Scholar
  90. Kessler, A., Halitschke, R., and Baldwin, I. T. 2004. Silencing the jasmonate cascade: Induced plant defenses and insect populations. Science 305:665–668.PubMedCrossRefGoogle Scholar
  91. Kessler, D., Gase, K., and Baldwin, I. T. 2008. Field experiments with transformed plants reveal the sense of floral scents. Science 321:1200–1202.PubMedCrossRefGoogle Scholar
  92. Koenig, S., Fernandez, P., and Sole, M. 2012. Differences in cytochrome P450 enzyme activities between fish and crustacea: Relationship with the bioaccumulation patterns of polychlorobiphenyls (PCBS). Aquat. Toxicol. 108:11–17.PubMedCrossRefGoogle Scholar
  93. Kohl, K. D. and Dearing, M. D. 2012. Experience matters: Prior exposure to plant toxins enhances diversity of gut microbes in herbivores. Ecol. Lett. 15:1008–1015.PubMedCrossRefGoogle Scholar
  94. Kohl, K. D., Weiss, R. B., Dale, C., and Dearing, M. D. 2011. Diversity and novelty of the gut microbial community of an herbivorous rodent (Neotoma bryanti). Symbiosis 54:47–54.CrossRefGoogle Scholar
  95. Kong, D. X., Jiang, Y. Y., and Zhang, H. Y. 2010. Marine natural products as sources of novel scaffolds: Achievement and concern. Drug Discov. Today 15:884–886.PubMedCrossRefGoogle Scholar
  96. Kool, K. M. 1992. Food selection by the silver leaf monkey, Trachypithecus-Auratus-Sondaicus, in relation to plant chemistry. Oecologia 90:527–533.Google Scholar
  97. Langille, M. G. I., Laird, M. R., Hsiao, W. W. L., Chiu, T. A., Eisen, J. A., and Brinkman, F. S. L. 2012. MicrobeDB: A locally maintainable database of microbial genomic sequences. Bioinformatics 28:1947–1948.PubMedCrossRefGoogle Scholar
  98. Lavin, S. R. and Karasov, W. H. 2008. Allometry of paracellular absorption in birds. Physiol. Biochem. Zool. 81:551–560.PubMedCrossRefGoogle Scholar
  99. Lawler, I. R., Foley, W. J., Pass, G. J., and Eschler, B. M. 1998. Administration of a 5HT(3) receptor antagonist increases the intake of diets containing eucalyptus secondary metabolites by marsupials. J. Comp. Physiol. B, Biochem. Syst. Environ. Physiol. 168:611–618.PubMedCrossRefGoogle Scholar
  100. Lawler, I. R., Stapley, J., Foley, W. J., and Eschler, B. M. 1999. Ecological example of conditioned flavor aversion in plant-herbivore interactions: Effect of terpenes of Eucalyptus leaves on feeding by common ringtail and brushtail possums. J. Chem. Ecol. 25:401–415.CrossRefGoogle Scholar
  101. Lawler, I. R., Aragones, L., Berding, N., Marsh, H., and Foley, W. 2006. Near-infrared reflectance spectroscopy is a rapid, cost-effective predictor of seagrass nutrients. J. Chem. Ecol. 32:1353–1365.PubMedCrossRefGoogle Scholar
  102. Ley, R. E., Peterson, D. A., and Gordon, J. I. 2006. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848.PubMedCrossRefGoogle Scholar
  103. Ley, R. E., Hamady, M., Lozupone, C., Turnbaugh, P. J., Ramey, R. R., Bircher, J. S., et al. 2008. Evolution of mammals and their gut microbes. Science 320:1647–1651.PubMedCrossRefGoogle Scholar
  104. Liang, X. F., Li, G. G., He, S., and Huang, Y. 2007. Transcriptional responses of alpha- and rho-class glutathione S-Transferase genes in the liver of three freshwater fishes intraperitoneally injected with microcystin-LR: Relationship of inducible expression and tolerance. J. Biochem. Mol. Toxicol. 21:289–298.Google Scholar
  105. Lindroth, R. L. 2010. Impacts of elevated atmospheric CO(2) and O(3) on forests: Phytochemistry, trophic interactions, and ecosystem dynamics. J. Chem. Ecol. 36:2–21.PubMedCrossRefGoogle Scholar
  106. Lokvam, J., Brenes-Arguedas, T., Lee, J. S., Coley, P. D., and Kursar, T. A. 2006. Allelochemic function for a primary metabolite: The case of L-tyrosine hyper-production in Inga umbellifera (Fabaceae). Am. J. Bot. 93:1109–1115.PubMedCrossRefGoogle Scholar
  107. Magnanou, E., Malenke, J. R., and Dearing, M. D. 2009. Expression of biotransformation genes in woodrat (Neotoma) herbivores on novel and ancestral diets: Identification of candidate genes responsible for dietary shifts. Mol. Ecol. 18:2401–2414.PubMedCrossRefGoogle Scholar
  108. Majak, W. 1992. Mammalian metabolism of toxic glycosides from plants. J. Toxicol. Toxin. Rev. 11:1–40.CrossRefGoogle Scholar
  109. Malenke, J. R., Magnanou, E., and Dearing, M. D. 2011. Cytochrome P450 2B diversity in a wild rodent herbivore, the desert woodrat (Neotoma lepida). Integr. Comp. Biol. 51:E85–E85.Google Scholar
  110. Mangione, A. M., Dearing, M. D., and Karasov, W. H. 2004. Creosote bush (Larrea tridentata) resin increases water demands and reduces energy availability in desert woodrats (Neotoma lepida). J. Chem. Ecol. 30:1409–1429.PubMedCrossRefGoogle Scholar
  111. Margulies, E. H. and Birney, E. 2008. Approaches to comparative sequence analysis: Towards a functional view of vertebrate genomes. Nat. Rev. Genet. 9:303–313.PubMedCrossRefGoogle Scholar
  112. Marsh, K. J., Wallis, I. R., and Foley, W. J. 2005. Detoxification rates constrain feeding in common brushtail possums (Trichosurus vulpecula). Ecology 86:2946–2954.CrossRefGoogle Scholar
  113. Marsh, K. J., Wallis, I. R., Andrew, R. L., and Foley, W. J. 2006a. The detoxification limitation hypothesis: Where did it come from and where is it going? J. Chem. Ecol. 32:1247–1266.PubMedCrossRefGoogle Scholar
  114. Marsh, K. J., Wallis, I. R., McLean, S., Sorensen, J. S., and Foley, W. J. 2006b. Conflicting demands on detoxification pathways influence how common brushtail possums choose their diets. Ecology 87:2103–2112.PubMedCrossRefGoogle Scholar
  115. Marsh, K. J., Wallis, I. R., and Foley, W. J. 2007. Behavioural contributions to the regulated intake of plant secondary metabolites in koalas. Oecologia 154:283–290.PubMedCrossRefGoogle Scholar
  116. Martin-Creuzburg, D. and von Elert, E. 2009. Good food versus bad food: The role of sterols and polyunsaturated fatty acids in determining growth and reproduction of Daphnia magna. Aquat. Ecol. 43:943–950.CrossRefGoogle Scholar
  117. Martins, J. C. and Vasconcelos, V. M. 2009. Microcystin dynamics in aquatic organisms. J. Toxicol. Environ. Health B Crit. Rev. 12:65–82.PubMedCrossRefGoogle Scholar
  118. Masahira, H., Oshima, K., Kim, S., Kurokawa, K., Toh, H., and Taylor, T. 2009. Metagenomics and genomics decoding human gut microbiomes. Genes Genet. Syst. 84:479–479.Google Scholar
  119. Matteotti, C., Thonart, P., Francis, F., Haubruge, E., Destain, J., Brasseur, C., et al. 2011. New glucosidase activities identified by functional screening of a genomic DNA library from the gut microbiota of the termite Reticulitermes santonensis. Microbiol. Res. 166:629–642.PubMedCrossRefGoogle Scholar
  120. Mayntz, D., Nielsen, V. H., Sorensen, A., Toft, S., Raubenheimer, D., Hejlesen, C., et al. 2009. Balancing of protein and lipid intake by a mammalian carnivore, the mink, mustela vison. Anim. Behav. 77:349–355.CrossRefGoogle Scholar
  121. McLean, S. and Duncan, A. J. 2006. Pharmacological perspectives on the detoxification of plant secondary metabolites: Implications for ingestive behavior of herbivores. J. Chem. Ecol. 32:1213–1228.PubMedCrossRefGoogle Scholar
  122. McLean, S., Brandon, S., Davies, N. W., Foley, W. J., and Muller, H. K. 2004. Jensenone: Biological reactivity of a marsupial antifeedant from Eucalyptus. J. Chem. Ecol. 30:19–36.PubMedCrossRefGoogle Scholar
  123. McLean, S., Boyle, R. R., Brandon, S., Davies, N. W., and Sorensen, J. S. 2007. Pharmacokinetics of 1,8-cineole, a dietary toxin, in the brushtail possum (Trichosurus vulpecula): Significance for feeding. Xenobiotica 37:903–922.PubMedCrossRefGoogle Scholar
  124. McLean, S., Richards, S. M., Cover, S. L., Brandon, S., Davies, N. W., Bryant, J. P., et al. 2009. Papyriferic acid, an antifeedant triterpene from birch trees, inhibits succinate dehydrogenase from liver mitochondria. J. Chem. Ecol. 35:1252–1261.PubMedCrossRefGoogle Scholar
  125. McLister, J. D., Sorensen, J. S., and Dearing, M. D. 2004. Effects of consumption of juniper (Juniperus monosperma) on cost of thermoregulation in the woodrats Neotoma albigula and Neotoma stephensi at different acclimation temperatures. Physiol. Biochem. Zool. 77:305–312.PubMedCrossRefGoogle Scholar
  126. McWhorter, T. J., Caviedes-Vidal, E., and Karasov, W. H. 2009. The integration of digestion and osmoregulation in the avian gut. Biol. Rev. 84:533–565.PubMedCrossRefGoogle Scholar
  127. Miller, G. A., Clissold, F. J., Mayntz, D., and Simpson, S. J. 2009. Speed over efficiency: Locusts select body temperatures that favour growth rate over efficient nutrient utilization. Proc. Biol. Sci. 276:3581–3589.PubMedCrossRefGoogle Scholar
  128. Min, B. R., Barry, T. N., Attwood, G. T., and McNabb, W. C. 2003. The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: A review. Anim. Feed. Sci. Technol. 106:3–19.CrossRefGoogle Scholar
  129. Mondal, S., Roy, T., Sen, S. K., and Ray, A. K. 2008. Distribution of enzyme-producing bacteria in the digestive tracts of some freshwater fish. Acta Ichtyol. Pisc. 38:1–8.CrossRefGoogle Scholar
  130. Moore, B. D. and Foley, W. J. 2005. Tree use by koalas in a chemically complex landscape. Nature 435:488–490.PubMedCrossRefGoogle Scholar
  131. Moore, B. D., Lawler, I. R., Wallis, I. R., Beale, C. M., and Foley, W. J. 2010. Palatability mapping: A koala's eye view of spatial variation in habitat quality. Ecology 91:3165–3176.PubMedCrossRefGoogle Scholar
  132. Mountfort, D. O., Campbell, J., and Clements, K. D. 2002. Hindgut fermentation in three species of marine herbivorous fish. Appl. Environ. Microbiol. 68:1374–1380.PubMedCrossRefGoogle Scholar
  133. Nersesian, C. L., Banks, P. B., and McArthur, C. 2011. Titrating the cost of plant toxins against predators: Determining the tipping point for foraging herbivores. J. Anim. Ecol. 80:753–760.PubMedCrossRefGoogle Scholar
  134. Nersesian, C. L., Banks, P. B., Simpson, S. J., and McArthur, C. 2012. Mixing nutrients mitigates the intake constraints of a plant toxin in a generalist herbivore. Behav. Ecol. 23:879–888.CrossRefGoogle Scholar
  135. Newman, R. M., Kerfoot, W. C., and Hanscom, Z. 1996. Watercress allelochemical defends high-nitrogen foliage against consumption: Effects on freshwater invertebrate herbivores. Ecology 77:2312–2323.CrossRefGoogle Scholar
  136. Opitz, S. E. W. and Muller, C. 2009. Plant chemistry and insect sequestration. Chemoecology 19:117–154.CrossRefGoogle Scholar
  137. Palo, R. and Robbins, C. 1991. Plant Defences Against Mammalian Herbivory. CRC Press, Inc, Boca Raton, FL.Google Scholar
  138. Paul, N. A., de Nys, R., Steinberg, P. D. 2006. Seaweed-herbivore interactions at a small scale: direct tests of feeding deterrence by filamentous algae. Marine Ecology-Progress Series. 323:1–9.Google Scholar
  139. Paul, V. J. and Vanalstyne, K. L. 1992. Activation of chemical defenses in the tropical green-algae Halimeda spp. J. Exp. Mar. Biol. Ecol. 160:191–203.CrossRefGoogle Scholar
  140. Pennings, S. C. and Paul, V. J. 1993. Secondary chemistry does not limit dietary range of the specialist sea hare Stylocheilum ongicauda. J. Exp. Mar. Biol. Ecol. 174:97–113.CrossRefGoogle Scholar
  141. Perez, T., Balcazar, J. L., Ruiz-Zarzuela, I., Halaihel, N., Vendrell, D., de Blas, I., et al. 2010. Host-microbiota interactions within the fish intestinal ecosystem. Mucosal Immunol. 3:355–360.PubMedCrossRefGoogle Scholar
  142. Peter, H. and Sommaruga, R. 2008. An evaluation of methods to study the gut bacterial community composition of freshwater zooplankton. J. Plankton Res. 30:997–1006.CrossRefGoogle Scholar
  143. Petschenka, G., Offe, J. K., and Dobler, S. 2012. Physiological screening for target site insensitivity and localization of Na+/K + −ATPase in cardenolide-adapted Lepidoptera. J. Insect Physiol. 58:607–612.PubMedCrossRefGoogle Scholar
  144. Poore, A. G. B., Hill, N. A., and Sotka, E. E. 2008. Phylogenetic and geographic variation in host breadth and composition by herbivorous amphipods in the family Ampithoidae. Evolution 62:21–38.PubMedGoogle Scholar
  145. Porras-Alfaro, A. and Bayman, P. 2011. Hidden fungi, emergent properties: Endophytes and microbiomes, pp. 291–315, in N. K. VanAlfen, G. Bruening, and J. E. Leach (eds.), Annual Review of Phytopathology, vol 49. Annual Reviews, Palo Alto.Google Scholar
  146. Provenza, F. D., Villalba, J. J., Cheney, C. D., and Werner, S. J. 1998. Self-organization of foraging behaviour: From simplicity to complexity without goals. Nutr. Res. Rev. 11:199–222.PubMedCrossRefGoogle Scholar
  147. Provenza, F. D., Villalba, J. J., Dziba, L. E., Atwood, S. B., and Banner, R. E. 2003. Linking herbivore experience, varied diets, and plant biochemical diversity. Small Rumin. Res. 49:257–274.CrossRefGoogle Scholar
  148. Raubenheimer, D. and Simpson, S. J. 1997. Integrative models of nutrient balancing: Application to insects and vertebrates. Nutr. Res. Rev. 10:151–179.PubMedCrossRefGoogle Scholar
  149. Raubenheimer, D. and Simpson, S. J. 2009. Nutritional pharmecology: Doses, nutrients, toxins, and medicines. Integr. Comp. Biol. 49:329–337.PubMedCrossRefGoogle Scholar
  150. Raubenheimer, D., Simpson, S. J., and Mayntz, D. 2009. Nutrition, ecology and nutritional ecology: Toward an integrated framework. Funct. Ecol. 23:4–16.CrossRefGoogle Scholar
  151. Rewitz, K. F., Styrishave, B., Lobner-Olesen, A., and Andersen, O. 2006. Marine invertebrate cytochrome P450: Emerging insights from vertebrate and insect analogies. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 143:363–381.CrossRefGoogle Scholar
  152. Reynaud, S., Raveton, M., and Ravanel, P. 2008. Interactions between immune and biotransformation systems in fish: A review. Aquat. Toxicol. 87:139–145.PubMedCrossRefGoogle Scholar
  153. Richardson, K. L., Gold-Bouchot, G., and Schlenk, D. 2009. The characterization of cytosolic glutathione transferase from four species of sea turtles: Loggerhead (Caretta caretta), green (Chelonia mydas), olive ridley (Lepidochelys olivacea), and hawksbill (Eretmochelys imbricata). Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 150:279–284.CrossRefGoogle Scholar
  154. Rincon, M. T., Allison, M. J., Michelangeli, F., de Sanctis, Y., and Dominguez-Bello, M. G. 1998. Anaerobic degradation of mimosine-derived hydroxypyridines by cell free extracts of the rumen bacterium Synergistes jonesii. FEMS Microbiol. Immunol. 27:127–132.Google Scholar
  155. Rothman, J. M., Raubenheimer, D., and Chapman, C. A. 2011. Nutritional geometry: Gorillas prioritize non-protein energy while consuming surplus protein. Biol. Lett. 7:847–849.PubMedCrossRefGoogle Scholar
  156. Scriber, J. M. and Slansky, F. 1981. The nutritional ecology of immature insects. Annu. Rev. Entomol. 26:183–211.CrossRefGoogle Scholar
  157. Shawahna, R., Uchida, Y., Decleves, X., Ohtsuki, S., Yousif, S., Dauchy, S., et al. 2011. Transcriptomic and quantitative proteomic analysis of transporters and drug metabolizing enzymes in freshly isolated human brain microvessels. Mol. Pharm. 8:1332–1341.PubMedCrossRefGoogle Scholar
  158. Shimada, T. 2006. Salivary proteins as a defense against dietary tannins. J. Chem. Ecol. 32:1149–1163.PubMedCrossRefGoogle Scholar
  159. Shipley, L. A., Forbey, J. S., and Moore, B. D. 2009. Revisiting the dietary niche: When is a mammalian herbivore a specialist? Integr. Comp. Biol. 49:274–290.PubMedCrossRefGoogle Scholar
  160. Simpson, S. J. and Raubenheimer, D. 2001. The geometric analysis of nutrient-allelochemical interactions: A case study using locusts. Ecology 82:422–439.Google Scholar
  161. Simpson, S. J., Raubenheimer, D., Charleston, M. A., Clissold, F. J., et al. 2010. Modelling nutritional interactions: From individuals to communities. Trends Ecol. Evol. 25:53–60.PubMedCrossRefGoogle Scholar
  162. Skopec, M. M., Green, A. K., and Karasov, W. H. 2010. Flavonoids have differential effects on glucose absorption in rats (Rattus norvegicus) and american robins (Turdis migratorius). J. Chem. Ecol. 36:236–243.PubMedCrossRefGoogle Scholar
  163. Slansky, F. 1992. Allelochemical–nutrient interactions in herbivore nutritional ecology, pp. 135–175, in G. Rosenthal and M. Berenbaum (eds.), Herbivores: Their Interactions with Secondary Plant Metabolites. Academic, San Diego.CrossRefGoogle Scholar
  164. Smital, T., Luckenbach, T., Sauerborn, R., Hamdoun, A. A., Vega, R. L., and Epel, D. 2004. Emerging contaminants - pesticides, PPCPs, microbial degradation products and natural substances as inhibitors of multixenobiotic defense in aquatic organisms. Mutat. Res. 552:101–117.PubMedCrossRefGoogle Scholar
  165. Sorensen, J. S. and Dearing, M. D. 2006. Efflux transporters as a novel herbivore countermechanism to plant chemical defenses. J. Chem. Ecol. 32:1181–1196.PubMedCrossRefGoogle Scholar
  166. Sorensen, J. S., Turnbull, C. A., and Dearing, M. D. 2004. A specialist herbivore (Neotoma stephensi) absorbs fewer plant toxins than a generalist (Neotoma albigula). Physiol. Biochem. Zool. 77:139–148.PubMedCrossRefGoogle Scholar
  167. Sorensen, J. S., Heward, E., and Dearing, M. D. 2005a. Plant secondary metabolites alter the feeding patterns of a mammalian herbivore (Neotoma lepida). Oecologia 146:415–422.PubMedCrossRefGoogle Scholar
  168. Sorensen, J. S., McLister, J. D., and Dearing, M. D. 2005b. Novel plant secondary metabolites impact dietary specialists more than generalists (Neotoma spp.). Ecology 86:140–154.CrossRefGoogle Scholar
  169. Sorensen, J. S., McLister, J. D., and Dearing, M. D. 2005c. Plant secondary metabolites compromise the energy budgets of specialist and generalist mammalian herbivores. Ecology 86:125–139.CrossRefGoogle Scholar
  170. Sorensen, J. S., Skopec, M. M., and Dearing, M. D. 2006. Application of pharmacological approaches to plant-mammal interactions. J. Chem. Ecol. 32:1229–1246.PubMedCrossRefGoogle Scholar
  171. Sotka, E. E., Forbey, J., Horn, M., Poore, A. G. B., Raubenheimer, D., and Whalen, K. E. 2009. The emerging role of pharmacology in understanding consumer-prey interactions in marine and freshwater systems. Integr. Comp. Biol. 49:291–313.PubMedCrossRefGoogle Scholar
  172. Stapley, J., Foley, W. J., Cunningham, R., and Eschler, B. 2000. How well can common brushtail possums regulate their intake of Eucalyptus toxins? J. Comp. Physiol. B, Biochem. Syst. Environ. Physiol. 170:211–218.PubMedCrossRefGoogle Scholar
  173. Stevens, C. E. and Hume, I. D. 1998. Contributions of microbes in vertebrate gastrointestinal tract to production and conservation of nutrients. Physiol. Rev. 78:393–427.PubMedGoogle Scholar
  174. Stolter, C., Julkunen-Tiitto, R., and Ganzhorn, J. U. 2006. Application of near infrared reflectance spectroscopy (NIRS) to assess some properties of a sub-arctic ecosystem. Basic Appl. Ecol. 7:167–187.CrossRefGoogle Scholar
  175. Sullam, K. E., Essinger, S. D., Lozupone, C. A., O'Connor, M. P., Rosen, G. L., Knight, R., et al. 2012. Environmental and ecological factors that shape the gut bacterial communities of fish: A meta-analysis. Mol. Ecol. 21:3363–3378.PubMedCrossRefGoogle Scholar
  176. Targett, N. M. and Arnold, T. M. 2001. Effects of secondary metabolites on digestion in marine herbivores, pp 391–412, in C. D. Amsler (ed.), Marine Chemical Ecology. CRC Press.Google Scholar
  177. Thiyagarajan, V. and Qian, P. Y. 2008. Proteomic analysis of larvae during development, attachment, and metamorphosis in the fouling barnacle, Balanus amphitrite. Proteomics 8:3164–3172.PubMedCrossRefGoogle Scholar
  178. Torregrossa, A. M. and Dearing, M. D. 2009. Nutritional toxicology of mammals: Regulated intake of plant secondary compounds. Funct. Ecol. 23:48–56.CrossRefGoogle Scholar
  179. Torregrossa, A. M., Azzara, A. V., and Dearing, M. D. 2011. Differential regulation of plant secondary compounds by herbivorous rodents. Funct. Ecol. 25:1232–1240.CrossRefGoogle Scholar
  180. Torregrossa, A. M., Azzara, A. V., and Dearing, M. D. 2012. Testing the diet-breadth trade-off hypothesis: Differential regulation of novel plant secondary compounds by a specialist and a generalist herbivore. Oecologia 168:711–718.PubMedCrossRefGoogle Scholar
  181. Turtola, S., Rousi, M., Pusenius, J., Yamaji, K., Heiska, S., Tirkkonen, V., et al. 2005. Clone-specific responses in leaf phenolics of willows exposed to enhanced UVB radiation and drought stress. Global Change Biol. 11:1655–1663.CrossRefGoogle Scholar
  182. van Alstyne, K. L., Pelletreau, K. N., and Kirby, A. 2009. Nutritional preferences override chemical defenses in determining food choice by a generalist herbivore, Littorina sitkana. J. Exp. Mar. Biol. Ecol. 379:85–91.CrossRefGoogle Scholar
  183. Vermeij, G. J. and Lindberg, D. R. 2000. Delayed herbivory and the assembly of marine benthic ecosystems. Paleobiology 26:419–430.CrossRefGoogle Scholar
  184. Walenciak, O., Zwisler, W., and Gross, E. 2002. Influence of Myriophyllum spicatum-derived tannins on gut microbiota of its herbivore Acentria ephemerella. J. Chem. Ecol. 28:2045–2056.PubMedCrossRefGoogle Scholar
  185. Weinstock, G. M. 2012. Genomic approaches to studying the human microbiota. Nature 489:250–256.PubMedCrossRefGoogle Scholar
  186. Wen, Z. M., Berenbaum, M. R., and Schuler, M. A. 2006. Inhibition of CYP6B1-mediated detoxification of xanthotoxin by plant allelochemicals in the black swallowtail (Papilio polyxenes). J. Chem. Ecol. 32:507–522.PubMedCrossRefGoogle Scholar
  187. Whalen, K. E., Morin, D., Lin, C. Y., Tjeerdema, R. S., Goldstone, J. V., and Hahn, M. E. 2008. Proteomic identification, cDNA cloning and enzymatic activity of glutathione S-transferases from the generalist marine gastropod, Cyphoma gibbosum. Arch. Biochem. Biophys. 478:7–17.PubMedCrossRefGoogle Scholar
  188. Whalen, K. E., Sotka, E. E., Goldstone, J. V., and Hahn, M. E. 2010. The role of multixenobiotic transporters in predatory marine molluscs as counter-defense mechanisms against dietary allelochemicals. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 152:288–300.PubMedCrossRefGoogle Scholar
  189. Whiteman, N. K., Groen, S. C., Chevasco, D., Bear, A., Beckwith, N., Gregory, T. R., et al. 2011. Mining the plant-herbivore interface with a leafmining Drosophila of Arabidopsis. Mol. Ecol. 20:995–1014.PubMedCrossRefGoogle Scholar
  190. Wiggins, N. L., McArthur, C., McLean, S., and Boyle, R. 2003. Effects of two plant secondary metabolites, cineole and gallic acid, on nightly feeding patterns of the common brushtail possum. J. Chem. Ecol. 29:1447–1464.PubMedCrossRefGoogle Scholar
  191. Wiggins, N. L., Marsh, K. J., Wallis, I. R., Foley, W. J., and McArthur, C. 2006a. Sideroxylonal in Eucalyptus foliage influences foraging behaviour of an arboreal folivore. Oecologia 147:272–279.PubMedCrossRefGoogle Scholar
  192. Wiggins, N. L., McArthur, C., and Davies, N. W. 2006b. Diet switching in a generalist mammalian folivore: Fundamental to maximising intake. Oecologia 147:650–657.PubMedCrossRefGoogle Scholar
  193. Wright, G. A., Simpson, S. J., Raubenheimer, D., and Stevenson, P. C. 2003. The feeding behavior of the weevil, Exophthalmus jekelianus, with respect to the nutrients and allelochemicals in host plant leaves. Oikos 100:172–184.CrossRefGoogle Scholar
  194. Wu, J. Q. and Baldwin, I. T. 2009. Herbivory-induced signalling in plants: Perception and action. Plant Cell Environ. 32:1161–1174.PubMedCrossRefGoogle Scholar
  195. Yamamoto, K., Qi, W. M., Yokoo, Y., Miyata, H., Udayanga, K. G. S., Kawano, J., et al. 2009. Histoplanimetrical study on the spatial relationship of distribution of indigenous bacteria with mucosal lymphatic follicles in alimentary tract of rat. J. Vet. Med. Sci. 71:621–630.PubMedCrossRefGoogle Scholar
  196. Yeager, C. P., Silver, S. C., and Dierenfeld, E. S. 1997. Mineral and phytochemical influences on foliage selection by the proboscis monkey (Nasalis larvatus). Am. J. Primatol. 41:117–128.PubMedCrossRefGoogle Scholar
  197. Zangerl, A. R., Liao, L. H., Jogesh, T., and Berenbaum, M. R. 2012. Aliphatic esters as targets of esterase activity in the Parsnip Webworm (Depressaria pastinacella). J. Chem. Ecol. 38:188–194.PubMedCrossRefGoogle Scholar
  198. Zhou, S. F., Wang, L. L., Di, Y. M., Xue, C. C., Duan, W., Li, C. G., et al. 2008. Substrates and inhibitors of human multidrug resistance associated proteins and the implications in drug development. Curr. Med. Chem. 15:1981–2039.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jennifer Sorensen Forbey
    • 1
  • M. Denise Dearing
    • 2
  • Elisabeth M. Gross
    • 3
  • Colin M. Orians
    • 4
  • Erik E. Sotka
    • 5
  • William J. Foley
    • 6
  1. 1.Department of Biological SciencesBoise State UniversityBoiseUSA
  2. 2.Department of BiologyUniversity of UtahSalt Lake CityUSA
  3. 3.Université de Lorraine, Laboratoire Interdiciplinaire Environnements Continentaux (LIEC) CNRS UMR 7360MetzFrance
  4. 4.Department of BiologyTufts UniversityMedfordUSA
  5. 5.Department of BiologyCollege of CharlestonCharlestonUSA
  6. 6.Research School of BiologyAustralian National UniversityCanberraAustralia

Personalised recommendations