Journal of Chemical Ecology

, Volume 39, Issue 3, pp 398–412 | Cite as

Does Prescribed Burning Affect Leaf Secondary Metabolites in Pine Stands?

  • A. V. Lavoir
  • E. Ormeño
  • V. Pasqualini
  • L. Ferrat
  • S. Greff
  • C. Lecareux
  • B. Vila
  • J. P. Mévy
  • C. Fernandez


Prescribed burning (PB) is gaining popularity as a low-cost forest protection measure that efficiently reduces fuel build-up, but its effects on tree health and growth are poorly understood. Here, we evaluated the impact of PB on plant defenses in Mediterranean pine forests (Pinus halepensis and P. nigra ssp. laricio). These chemical defenses were estimated based on needle secondary metabolites (terpenes and phenolics including flavonoids) and discussed in terms of chlorophyll fluorescence and soil nutrients. Three treatments were applied: absence of burning (control plots); single burns (plots burned once); and repeated burns (plots burned twice). For single burns, we also explored changes over time. In P. laricio, PB tended to trigger only minor modifications consisting exclusively of short-lived increases (observed within 3 months after PB) in flavonoid index, possibly due to the leaf temperature increase during PB. In P. halepensis, PB had detrimental effects on physiological performance, consisting of (i) significant decreases in actual PSII efficiency (ΦPSII) in light-adapted conditions after repeated PB, and (ii) short-lived decreases in variable-to-maximum fluorescence ratio (Fv/Fm) after single PB, indicating that PB actually stressed P. halepensis trees. Repeated PB also promoted terpene-like metabolite production, which increased 2 to 3-fold compared to control trees. Correlations between terpene metabolites and soil chemistry were found. These results suggest that PB impacts needle secondary metabolism both directly (via a temperature impact) and indirectly (via soil nutrients), and that these impacts vary according to species/site location, frequency and time elapsed since last fire. Our findings are discussed with regard to the use of PB as a forest management technique and its consequences on plant investment in chemical defenses.


Fire prevention Secondary metabolism Terpenes Phenolic compounds Flavonoid Pinus halepensis Pinus laricio 



This study was funded by the French Ministry of Agricultural and Fisheries (GIS Incendie program – N° E 11/07). The authors are grateful to the “Office National des Forêts” (ONF) for PB, especially Philippe Caramelle, Gilles Planelles, Antonella Massaiu, and Jean-Yves Duret from the forestry service of the South Corsica department. We also thank Lionel Kmiec from the ONF (Bouches-du-Rhône and Vaucluse) for his help with selecting sites in the Luberon and for the technical information on prescribed burning in this region, and Virginie Baldy, Anne-Bousquet Mélou, Sylvie Dupouyet, and Thierry Gauquelin from the IMBE for assistance in the field.

Supplementary material

10886_2013_256_MOESM1_ESM.docx (165 kb)
ESM 1 (DOCX 165 kb)


  1. Adams, RP. 2007. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th edition. Allured Publishing Corporation, Illinois, USA.Google Scholar
  2. Alonso, M., Rozados, M. J., Vega, J. A., Perez-Gorostiaga, P., Cuinas, P., Fonturbel, M. T., and Fernandez, C. 2002. Biochemical responses of Pinus pinaster trees to fire-induced trunk girdling and crown scorch: Secondary metabolites and pigments as needle chemical indicators. J. Chem. Ecol. 28:687–700.PubMedCrossRefGoogle Scholar
  3. Bernard-Dagan, C. 1988. Seasonal variations in energy sources and biosynthesis of terpenes in maritime pine, pp. 93–116, in W. Mattson, J. Levieux, and C. Bernard-Degan (eds.), Mechanisms of Woody Plant Defenses Against Insects. Springer, New York.Google Scholar
  4. Binder, W. D., Fielder, P., Mohammed, G. H., and Lhirondelle, S. J. 1997. Applications of chlorophyll fluorescence for stock quality assessment with different types of fluorometers. New Forests 13:63–89.CrossRefGoogle Scholar
  5. Björkman, O. 1987. High irradiance stress in higher plants and interaction with other stress factors, pp. 11–18, in J. Biggens (eds.), Progress in Photosynthesis Research. Martinus Nijhoff, Dordrecht.Google Scholar
  6. Bohlmann, J. and Keeling, C. I. 2008. Terpenoid biomaterials. Plant J. 54:656–669.PubMedCrossRefGoogle Scholar
  7. Busse, M. D., Simon, S. A., and Riegel, G. M. 2000. Tree-growth and understory responses to low-severity prescribed burning in thinned Pinus ponderosa forests of central Oregon. Forest Sci. 46:258–268.Google Scholar
  8. Cain, M. D. and Shelton, M. G. 2000. Survival and growth of Pinus echinata and Quercus seedlings in response to simulated summer and winter prescribed burns. Can. J. Forest. Res. 30:1830–1836.CrossRefGoogle Scholar
  9. Cannac, M., Pasqualini, V., Greff, S., Fernandez, C., and Ferrat, L. 2007. Characterization of phenolic compounds in Pinus laricio needles and their responses to prescribed burnings. Molecules 12:1614–1622.PubMedCrossRefGoogle Scholar
  10. Cannac, M., Barboni, T., Ferrat, L., Bighelli, A., Castola, V., Costa, J., Trecul, D., Morandini, F., and Pasqualini, V. 2009a. Oleoresin flow and chemical composition of Corsican pine (Pinus nigra subsp. laricio) in response to prescribed burnings. Forest Ecol. Manage. 257:1247–1254.CrossRefGoogle Scholar
  11. Cannac, M., Pasqualini, V., Barboni, T., Morandini, F., and Ferrat, L. 2009b. Phenolic compounds of Pinus laricio needles: a bioindicator of the effects of prescribed burning in function of season. Sci. Total. Environ. 407:4542–4548.PubMedCrossRefGoogle Scholar
  12. Cannac, M., Ferrat, L., Barboni, T., Chiaramonti, N., Morandini, F., and Pasqualini, V. 2011. Identification of flavonoids in Pinus Laricio needles and changes occurring after prescribed burning. Chemoecology 21:9–17.CrossRefGoogle Scholar
  13. Carter, M. C. and Foster, C. D. 2004. Prescribed burning and productivity in southern pine forests: a review. Forest Ecol. Manage. 191:93–109.CrossRefGoogle Scholar
  14. De Abreu, I. N. and Mazzafera, P. 2005. Effect of water and temperature stress on the content of active constituents of Hypericum brasiliense Choisy. Plant Physiol. Biochem. 43:241–248.CrossRefGoogle Scholar
  15. Dela, G., Or, E., Ovadia, R., Nissim-Levi, A., Weiss, D., and Oren-Shamir, M. 2003. Changes in anthocyanin concentration and composition in ‘Jaguar’ rose flowers due to transient high-temperature conditions. Plant Sci. 164:333–340.CrossRefGoogle Scholar
  16. Ducrey, M., Duhoux, F., Huc, R., and Rigolot, E. 1996. The ecophysiological and growth responses of Aleppo pine (Pinus halepensis) to controlled heating applied to the base of the trunk. Can. J. Forest. Res. 26:1366–1374.CrossRefGoogle Scholar
  17. Fernandes, P. M. and Rigolot, E. 2007. The fire ecology and management of maritime pine (Pinus pinaster Ait.). Forest Ecol. Manage. 241:1–13.CrossRefGoogle Scholar
  18. Francini, A., Nali, C., Pellegrini, E., and Lorenzini, G. 2008. Characterization and isolation of some genes of the shikimate pathway in sensitive and resistant Centaurea jacea plants after ozone exposure. Environ. Poll. 151:272–279.CrossRefGoogle Scholar
  19. Fritts, H. C. 1976. Tree-rings and Climate. Academic, London.Google Scholar
  20. Genty, B., Briantais, J. M., and Baker, N. R. 1989. The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990:87–92.CrossRefGoogle Scholar
  21. Gonzalez-Perez, J. A., Gonzalez-Vila, F. J., Almendros, G., and Knicker, H. 2004. The effect of fire on soil organic matter - a review. Environ. Int. 30:855–870.PubMedCrossRefGoogle Scholar
  22. Harborne, J. B. 1975. Flavonoid sulfates - New class of sulfur compounds in higher plants. Phytochemistry 14:1147–1155.CrossRefGoogle Scholar
  23. Herms, D. A. and Mattson, W. J. 1992. The dilemma of plants - to grow or defend. Quart. Rev. Biol. 67:478–478.CrossRefGoogle Scholar
  24. Kaundun, S. S., Lebreton, P., and Fady, B. 1998. Geographical variability of Pinus halepensis Mill. as revealed by foliar flavonoids. Biochem. System. Ecol. 26:83–96.CrossRefGoogle Scholar
  25. Keeling, C. I. and Bohlmann, J. 2006. Diterpene resin acids in conifers. Phytochemistry 67:2415–2423.PubMedCrossRefGoogle Scholar
  26. Langenheim, JH. 2003. Plant resins: chemistry, evolution, ecology and ethnobotany. Timber Press, Cambridge. Portland, OR, USA.Google Scholar
  27. Larcheveque, M., Baldy, V., Montes, N., Fernandez, C., Bonin, G., and Ballini, C. 2006. Short-term effects of sewage-sludge compost on a degraded Mediterranean soil. Soil Sci. Soc. Am. J. 70:1178–1188.CrossRefGoogle Scholar
  28. Leone, V. and Lovreglio, R. 2004. Conservation of Mediterranean pine woodlands: scenarios and legislative tools. Plant Ecol. 171:221–235.CrossRefGoogle Scholar
  29. Lombardero, M. J., Ayres, M. P., and Ayres, B. D. 2006. Effects of fire and mechanical wounding on Pinus resinosa resin defenses, beetle attacks, and pathogens. Forest Ecol. Manage. 225:349–358.CrossRefGoogle Scholar
  30. Loponen, J., Lempa, K., Ossipov, V., Kozlov, M. V., Girs, A., Hangasmaa, K., Haukioja, E., and Pihlaja, K. 2001. Patterns in content of phenolic compounds in leaves of mountain birches along a strong pollution gradient. Chemosphere 45:291–301.PubMedCrossRefGoogle Scholar
  31. Michelozzi, M., Loreto, F., Colom, R., Rossi, F., and Calamassi, R. 2011. Drought responses in Aleppo pine seedlings from two wild provenances with different climatic features. Photosynthetica 49:564–572.CrossRefGoogle Scholar
  32. Miguel, M. G. 2010. Antioxidant activity of medicinal and aromatic plants. A review. Flavour Frag. J. 25:291–312.CrossRefGoogle Scholar
  33. Ormeño, E. and Fernandez, C. 2012. Effect of soil nutrient on production and diversity of volatile terpenoids from plants. Curr. Bioact. Compounds 8:71–79.CrossRefGoogle Scholar
  34. Ormeño, E., Baldy, V., Ballini, C., and Fernandez, C. 2008. Production and diversity of volatile terpenes from plants on calcareous and siliceous soils: effect of soil nutrients. J. Chem. Ecol. 34:1219–1229.PubMedCrossRefGoogle Scholar
  35. Ormeño, E., Cespedes, B., Sanchez, I. A., Velasco-Garcia, A., Moreno, J. M., Fernandez, C., and Baldy, V. 2009a. The relationship between terpenes and flammability of leaf litter. Forest Ecol. Manag. 257:471–482.CrossRefGoogle Scholar
  36. Ormeño, E., Olivier, R., Mevy, J. P., Baldy, V., and Fernandez, C. 2009b. Compost may affect volatile and semi-volatile plant emissions through nitrogen supply and chlorophyll fluorescence. Chemosphere 77:94–104.PubMedCrossRefGoogle Scholar
  37. Ormeño, E., Goldstein, A., and Niinemets, U. 2011. Extracting and trapping biogenic volatile organic compounds stored in plant species. Trends Analyt. Chem. 30:978–989.CrossRefGoogle Scholar
  38. Pasqualini, V., Robles, C., Garzino, S., Greff, S., Bousquet-Melou, A., and Bonin, G. 2003. Phenolic compounds content in Pinus halepensis Mill. needles: a bioindicator of air pollution. Chemosphere 52:239–248.PubMedCrossRefGoogle Scholar
  39. Poiatti, V. A. D., Dalmas, F. R., and Astarita, L. V. 2009. Defense mechanisms of Solanum tuberosum L. in response to attack by plant-pathogenic bacteria. Biolog. Res. 42:205–215.Google Scholar
  40. Rezzi, S., Bighelli, A., Mouillot, D., and Casanova, J. 2001. Composition and chemical variability of the needle essential oil of Pinus nigra subsp. laricio from Corsica. Flavour Frag. J. 16:379–383.CrossRefGoogle Scholar
  41. Richardson, D. M., Rundel, P. W., Jackson, S. T., Teskey, R. O., Aronson, J., Bytnerowicz, A., Wingfield, M. J., and Proches, S. 2007. Human impacts in pine forests: past, present, and future. Annu. Rev. Ecol. Evolut. System. 38:275–297.CrossRefGoogle Scholar
  42. Rivero, R. M., Ruiz, J. M., Garcia, P. C., Lopez-Lefebre, L. R., Sanchez, E., and Romero, L. 2001. Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci. 160:315–321.PubMedCrossRefGoogle Scholar
  43. Robles, C., Greff, S., Pasqualini, V., Garzino, S., Bousquet-Melou, A., Fernandez, C., Korboulewsky, N., and Bonin, G. 2003. Phenols and flavonoids in Aleppo pine needles as bioindicators of air pollution. J. Environ. Qual. 32:2265–2271.PubMedCrossRefGoogle Scholar
  44. Sampedro, L., Moreira, X., and Zas, R. 2011. Costs of constitutive and herbivore-induced chemical defenses in pine trees emerge only under low nutrient availability. J. Ecol. 99:818–827.CrossRefGoogle Scholar
  45. Santoro, A. E., Lombardero, M. J., Ayres, M. P., and Ruel, J. J. 2001. Interactions between fire and bark beetles in an old growth pine forest. Forest Ecol. Manage. 144:245–254.CrossRefGoogle Scholar
  46. Schweingruber, F. H. 1988. Tree Rings: Basics and Applications of Dendrochronology. Kluwer Academic Publishers, Dordrecht. 276 p.CrossRefGoogle Scholar
  47. Seigler, D. S. 1998. pp. 759, Plant Secondary Metabolism. Kluwer Academic Publishers, Dordrecht.Google Scholar
  48. Singleton, V. L. and Rossi, J. A. 1965. Colorimetry of total phenolics with phosphomolybdic acid reagents. Am. J. Enol. Viticul. 16:144–158.Google Scholar
  49. Skerget, M., Kotnik, P., Hadolin, M., Hras, H. R., Simonic, M., and Knez, Z. 2005. Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chem. 89:191–198.CrossRefGoogle Scholar
  50. Skov, K. R., Kolb, T. E., and Wallin, K. F. 2004. Tree size and drought affect ponderosa pine physiological response to thinning and burning treatments. Forest Sci. 50:81–91.Google Scholar
  51. Stamp, N. 2003. Out of the quagmire of plant defense hypotheses. Quart. Rev. Biol. 78:23–55.PubMedCrossRefGoogle Scholar
  52. Vickers, C. E., Possell, M., Cojocariu, C. I., Velikova, V. B., Laothawornkitkul, J., Ryan, A., Mullineaux, P. M., and Hewitt, C. N. 2009. Isoprene synthesis protects transgenic tobacco plants from oxidative stress. Plant Cell Environ. 32:520–531.PubMedCrossRefGoogle Scholar
  53. Wallin, K. F., Kolb, T. E., Skov, K. R., and Wagner, M. R. 2003. Effects of crown scorch on ponderosa pine resistance to bark beetles in northern Arizona. Environ. Entomol. 32:652–661.CrossRefGoogle Scholar
  54. Wallin, K. F., Kolb, T. E., Skov, K. R., and Wagner, M. R. 2004. Seven-year results of thinning and burning restoration treatments on old ponderosa pines at the Gus Pearson natural area. Restoration Ecol. 12:239–247.CrossRefGoogle Scholar
  55. Wallis, C., Eyles, A., Chorbadjian, R., Gardener, B. M., Hansen, R., Cipollini, D., Herms, D. A., and Bonello, P. 2008. Systemic induction of phloem secondary metabolism and its relationship to resistance to a canker pathogen in Austrian pine. New Phytol. 177:767–778.PubMedCrossRefGoogle Scholar
  56. Wallis, C. M., Huber, D. P. W., and Lewis, K. J. 2011. Ecosystem, location, and climate effects on foliar secondary metabolites of lodgepole pine populations from Central British Columbia. J. Chem. Ecol. 37:607–621.PubMedCrossRefGoogle Scholar
  57. Xu, C. P., Natarajan, S., and Sullivan, J. H. 2008. Impact of solar ultraviolet-B radiation on the antioxidant defense system in soybean lines differing in flavonoid contents. Environ. Exp. Bot. 63:39–48.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • A. V. Lavoir
    • 1
  • E. Ormeño
    • 2
  • V. Pasqualini
    • 3
  • L. Ferrat
    • 3
  • S. Greff
    • 2
  • C. Lecareux
    • 2
  • B. Vila
    • 2
  • J. P. Mévy
    • 2
  • C. Fernandez
    • 2
  1. 1.ISA (Institut Sophia Agrobiotech: UMR Université de Nice - INRA - CNRS). Centre INRA-PACA Sophia AntipolisSophia-Antipolis CedexFrance
  2. 2.Aix-Marseille Université - Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE UMR CNRS 7263 IRD 237), Centre St Charles, Case 4Marseille Cedex 03France
  3. 3.Université de Corse - Sciences Pour l’Environnement (SPE UMR CNRS 6134), Faculté des Sciences et TechniquesCorteFrance

Personalised recommendations