Journal of Chemical Ecology

, Volume 39, Issue 2, pp 232–242 | Cite as

Plant-Soil Feedbacks and Soil Sickness: From Mechanisms to Application in Agriculture

  • Li-Feng Huang
  • Liu-Xia Song
  • Xiao-Jian Xia
  • Wei-Hua Mao
  • Kai Shi
  • Yan-Hong Zhou
  • Jing-Quan Yu
Review Article


Negative plant-soil feedbacks play an important role in soil sickness, which is one of the factors limiting the sustainable development of intensive agriculture. Various factors, such as the buildup of pests in the soil, disorder in physico-chemical soil properties, autotoxicity, and other unknown factors may contribute to soil sickness. A range of autotoxins have been identified, and these exhibit their allelopathic potential by influencing cell division, water and ion uptake, dark respiration, ATP synthesis, redox homeostasis, gene expression, and defense responses. Meanwhile, there are great interspecific and intraspecific differences in the uptake and accumulation of autotoxins, which contribute to the specific differences in growth in response to different autotoxins. Importantly, the autotoxins also influence soil microbes and vice versa, leading to an increased or decreased degree of soil sickness. In many cases, autotoxins may enhance soilborne diseases by predisposing the roots to infection by soilborne pathogens through a direct biochemical and physiological effect. Some approaches, such as screening for low autotoxic potential and disease-resistant genotypes, proper rotation and intercropping, proper soil and plant residue management, adoption of resistant plant species as rootstocks, introduction of beneficial microbes, physical removal of phytotoxins, and soil sterilization, are proposed. We discuss the challenges that we are facing and possible approaches to these.


Autotoxicity Beneficial microbes Detrimental microbes Microbial community Reactive oxygen species Rhizosphere Root exudates Soil health Soil-borne pathogens Suppressive soil Soil-legacy effects 



This work was supported by the National Basic Research Program of China (2009CB119000), the National Key Technology R&D Program of China (2011BAD12B04) and the National Natural Science Foundation of China (31272155).


  1. Asaduzzaman, M. and Asao, T. 2012. Autotoxicity in beans and their allelochemicals. Sci Hortic-Amsterdam 134:26–31.CrossRefGoogle Scholar
  2. Asaduzzaman, M., Kobayashi, Y., Isogami, K., Tokura, M., Tokumasa, K., and Asao, T. 2012. Growth and yield recovery in strawberry plants under autotoxicity through electrodegradation. Eur. J. Hortic. Sci. 77:58–67.Google Scholar
  3. Asao, T., Shimizu, N., Ohta, K., and Hosoki, T. 1999. Effect of rootstocks on the extension of harvest period of cucumber (Cucumis sativus L.) grown in non-renewal hydroponics. J. Jpn. Soc. Hortic. Sci. 68:598–602.CrossRefGoogle Scholar
  4. Asao, T., Hasegawa, K., Sueda, Y., Tomita, K., Taniguchi, K., Hosoki, T., Pramanik, M. H. R., and Matsui, Y. 2003. Autotoxicity of root exudates from taro. Sci Hortic-Amsterdam 97:389–396.CrossRefGoogle Scholar
  5. Asao, T., Kitazawa, H., Ban, T., Pramanik, M. H. R., Matsui, Y., and Hosoki, T. 2004a. Search of autotoxic substances in some leaf vegetables. J. Jpn. Soc. Hortic. Sci. 73:247–249.CrossRefGoogle Scholar
  6. Asao, T., Kitazawa, H., Tomita, K., Suyama, K., Yamamoto, H., Hosoki, T., and Pramanik, M. H. R. 2004b. Mitigation of cucumber autotoxicity in hydroponic culture using microbial strain. Sci Hortic-Amsterdam 99:207–214.CrossRefGoogle Scholar
  7. Benizri, E., Piutti, S., Verger, S., Pages, L., Vercambre, G., Poessel, J. L., and Michelot, P. 2005. Replant diseases: Bacterial community structure and diversity in peach rhizosphere as determined by metabolic and genetic fingerprinting. Soil Biol. Biochem. 37:1738–1746.CrossRefGoogle Scholar
  8. Berg, G. 2009. Plant-microbe interactions promoting plant growth and health: Perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol. 84:11–18.PubMedCrossRefGoogle Scholar
  9. Besserer, A., Puech-Pagés, V., Kiefer, P., Gomez-Roldan, V., Jauneau, A., Roy, S., Portais, J. C., Roux, C., Bécard, G., and Séjalon-Delmas, N. 2006. Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol. 4:e226.PubMedCrossRefGoogle Scholar
  10. Bever, J. D., Dickie, I. A., Facelli, E., Facelli, J. M., Klironomos, J., Moora, M., Rillig, M. C., Stock, W. D., Tibbett, M., and Zobel, M. 2010. Rooting theories of plant community ecology in microbial interactions. Trends Ecol. Evol. 25:468–478.PubMedCrossRefGoogle Scholar
  11. Blum, U. 1998. Effects of microbial utilization of phenolic acids and their phenolic acid breakdown products on allelopathic interactions. J. Chem. Ecol. 24:685–708.CrossRefGoogle Scholar
  12. Blum, U., Staman, K. L., Flint, L. J., and Shafer, S. R. 2000. Induction and/or selection of phenolic acid-utilizing bulk-soil and rhizosphere bacteria and their influence on phenolic acid phytotoxicity. J. Chem. Ecol. 26:2059–2078.CrossRefGoogle Scholar
  13. Börner, H. 1959. The apple replant problem. I. The excretion of phlorizin from apple root residues. Contributions of the Boyce Thompson Institute 20:39–56.Google Scholar
  14. Börner, H. 1960. Liberation of organic substances from higher plants and their role in the soil sickness problem. Bot. Rev. 26:393–424.CrossRefGoogle Scholar
  15. Bulgarelli, D., Rott, M., Schlaeppi, K., van Themaat, E. V. L., Ahmadinejad, N., Assenza, F., Rauf, P., Huettel, B., Reinhardt, R., Schmelzer, E., Peplies, J., Gloeckner, F. O., Amann, R., Eickhorst, T., and Schulze-Lefert, P. 2012. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95.PubMedCrossRefGoogle Scholar
  16. Burger, W. P. and Small, J. G. C. 1983. Allelopathy in citrus orchards. Sci Hortic-Amsterdam 20:361–375.CrossRefGoogle Scholar
  17. Caboun, V. 2005. Soil sickness in forestry trees. Allelopath. J. 16:199–208.Google Scholar
  18. Canals, R. M., Emeterio, L. S., and Peralta, J. 2005. Autotoxicity in Lolium Rigidum: Analyzing the role of chemically mediated interactions in annual plant populations. J. Theor. Biol. 235:402–407.PubMedCrossRefGoogle Scholar
  19. Cao, P. R., Liu, C. Y., and Li, D. 2011. Autointoxication of tea (Camellia sinensis) and identification of its autotoxins. Allelopath. J. 28:155–165.Google Scholar
  20. Carter, M. R. and Sanderson, J. B. 2001. Influence of conservation tillage and rotation length on potato productivity, tuber disease and soil quality parameters on a fine sandy loam in eastern Canada. Soil Tillage Res. 63:1–13.CrossRefGoogle Scholar
  21. Caspersen, S., Alsanius, B. W., Sundin, P., and Jensen, P. 2000. Bacterial amelioration of ferulic acid toxicity to hydroponically grown lettuce (Lactuca sativa L.). Soil Biol. Biochem. 32:1063–1070.CrossRefGoogle Scholar
  22. Chen, L. H., Yang, X. M., Raza, W., Li, J. H., Liu, Y. X., Qiu, M. H., Zhang, F. G., and Shen, Q. R. 2011a. Trichoderma harzianum SQR-T037 rapidly degrades allelochemicals in rhizospheres of continuously cropped cucumbers. Appl. Microbiol. Biotechnol. 89:1653–1663.PubMedCrossRefGoogle Scholar
  23. Chen, S. L., Zhou, B. L., Lin, S. S., Li, X., and Ye, X. L. 2011b. Accumulation of cinnamic acid and vanillin in eggplant root exudates and the relationship with continuous cropping obstacle. Afr. J. Biotechnol. 10:2659–2665.Google Scholar
  24. Chon, S. U., Choi, S. K., Jung, S., Jang, H. G., Pyo, B. S., and Kim, S. M. 2002. Effects of alfalfa leaf extracts and phenolic allelochemicals on early seedling growth and root morphology of alfalfa and barnyard grass. Crop Prot. 21:1077–1082.CrossRefGoogle Scholar
  25. Chou, C. H. 1999. Roles of allelopathy in plant biodiversity and sustainable agriculture. Crit. Rev. Plant Sci. 18:609–636.CrossRefGoogle Scholar
  26. Chou, C. H. and Lin, H. J. 1976. Autointoxication mechanisms of Oryza sativa. I. Phytotoxic effects of decomposing rice residues in soil. J. Chem. Ecol. 2:353–367.CrossRefGoogle Scholar
  27. Chou, C. H. and Waller, G. R. 1980. Possible allelopathic constituents of Coffea arabica. J. Chem. Ecol. 6:643–654.CrossRefGoogle Scholar
  28. Chung, I. M., Seigler, D., Miller, D. A., and Kyung, S. H. 2000. Autotoxic compounds from fresh alfalfa leaf extracts: Identification and biological activity. J. Chem. Ecol. 26:315–327.CrossRefGoogle Scholar
  29. Cohen, M. F., Yamasaki, H., and Mazzola, M. 2005. Brassica napus seed meal soil amendment modifies microbial community structure, nitric oxide production and incidence of rhizoctonia root rot. Soil Biol. Biochem. 37:1215–1227.CrossRefGoogle Scholar
  30. Dayan, F. E. 2006. Factors modulating the levels of the allelochemical sorgoleone in Sorghum bicolor. Planta 224:339–346.PubMedCrossRefGoogle Scholar
  31. Ding, J., Sun, Y., Xiao, C. L., Shi, K., Zhou, Y. H., and Yu, J. Q. 2007. Physiological basis of different allelopathic reactions of cucumber and figleaf gourd plants to cinnamic acid. J. Exp. Bot. 58:3765–3773.PubMedCrossRefGoogle Scholar
  32. Dornbos, D. L., Spencer, G. F., and Miller, R. W. 1990. Medicarpin delays alfalfa seed-germination and seedling growth. Crop Sci. 30:162–166.CrossRefGoogle Scholar
  33. Farooq, M., Jabran, K., Cheema, Z. A., Wahid, A., and Siddique, K. H. 2011. The role of allelopathy in agricultural pest management. Pest Manag Sci 67:493–506.PubMedCrossRefGoogle Scholar
  34. Fredrickson, J. K. and Elliott, L. F. 1985. Effects on winter-wheat seedling growth by toxin-producing rhizobacteria. Plant Soil 83:399–409.CrossRefGoogle Scholar
  35. Garbeva, P., van Veen, J. A., and van Elsas, J. D. 2004. Microbial diversity in soil: Selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu. Rev. Phytopathol. 42:243–270.PubMedCrossRefGoogle Scholar
  36. Gog, L., Berenbaum, M. R., Delucia, E. H., and Zangerl, A. R. 2005. Autotoxic effects of essential oils on photosynthesis in parsley, parsnip, and rough lemon. Chemoecology 15:115–119.CrossRefGoogle Scholar
  37. Grodzinsky, A. M. 2006. Allelopathy in Soil Sickness. Scientific Publishers, Jodhpur.Google Scholar
  38. Gu, Y. H. and Mazzola, M. 2003. Modification of fluorescent pseudomonad community and control of apple replant disease induced in a wheat cultivar-specific manner. Appl. Soil Ecol. 24:57–72.CrossRefGoogle Scholar
  39. Guenzi, W. D. and Mccalla, T. M. 1966. Phytotoxic substances extracted from soil. Soil Sci. Soc. Am. Pro 30:214–216.CrossRefGoogle Scholar
  40. Hartung, A. C. and Stephens, C. T. 1983. Effects of allelopathic substances produced by asparagus on incidence and severity of asparagus decline due to fusarium crown rot. J. Chem. Ecol. 9:1163–1174.CrossRefGoogle Scholar
  41. Hartung, A. C., Nair, M. G., and Putnam, A. R. 1990. Isolation and characterization of phytotoxic compounds from asparagus (Asparagus officinalis L) roots. J. Chem. Ecol. 16:1707–1718.CrossRefGoogle Scholar
  42. He, C. N., Gao, W. W., Yang, J. X., Bi, W., Zhang, X. S., and Zhao, Y. J. 2009. Identification of autotoxic compounds from fibrous roots of Panax quinquefolium L. Plant Soil 318:63–72.CrossRefGoogle Scholar
  43. Huang, Z. Q., Liao, L. P., and Wang, S. L. 2000. Allelopathy of phenolics from decomposing stump-roots in replant chinese fir woodland. J. Chem. Ecol. 26:2211–2219.CrossRefGoogle Scholar
  44. Kardol, P., Bezemer, T. M., and van der Putten, W. H. 2006. Temporal variation in plant-soil feedback controls succession. Ecol. Lett. 9:1080–1088.PubMedCrossRefGoogle Scholar
  45. Kato-noguchi, H. and Peters, R. 2013. The role of momilactones in rice allelopathy. J. Chem. Ecol., this issue.Google Scholar
  46. Kaur, H., Kaur, R., Kaur, S., Baldwin, I. T., and Inderjit 2009. Taking ecological function seriously: Soil microbial communities can obviate allelopathic effects of released metabolites. PLoS ONE 4(3).Google Scholar
  47. Kennedy, A. C. 1999. Bacterial diversity in agroecosystems. Agric. Ecosyst. Environ. 74(1–3):65–76.CrossRefGoogle Scholar
  48. Khare, E. and Arora, N. K. 2010. Effect of indole-3-acetic acid (IAA) produced by Pseudomonas aeruginosa in suppression of charcoal rot disease of chickpea. Curr. Microbiol. 61:64–68.PubMedCrossRefGoogle Scholar
  49. Kitazawa, H., Asao, T., Ban, T., Pramanik, M. H. R., and Hosoki, T. 2005. Autotoxicity of root exudates from strawberry in hydroponic culture. J. Hortic. Sci. Biotechnol. 80:677–680.Google Scholar
  50. Klironomos, J. N. 2002. Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70.PubMedCrossRefGoogle Scholar
  51. Knops, J. M. H., Tilman, D., Haddad, N. M., Naeem, S., Mitchell, C. E., Haarstad, J., Ritchie, M. E., Howe, K. M., Reich, P. B., Siemann, E., et al. 1999. Effects of plant species richness on invasion dynamics, disease outbreaks, insect abundances and diversity. Ecol. Lett. 2:286–293.CrossRefGoogle Scholar
  52. Komada, H. 1988. The Occurrence, Ecology of Soil-Borne Diseases and Their Control. Takii Seed Co. Ltd, Japan. in Japanese.Google Scholar
  53. Kong, C. H., Chen, L. C., Xu, X. H., Wang, P., and Wang, S. L. 2008. Allelochemicals and activities in a replanted chinese fir (Cunninghamia lanceolata (Lamb.) Hook) tree ecosystem. J. Agric. Food Chem 56:11734–11739.PubMedCrossRefGoogle Scholar
  54. Kostenko, O., van de Voorde, T. F. J., Mulder, P. P. J., van der Putten, W. H., and Martijn Bezemer, T. 2012. Legacy effects of aboveground-belowground interactions. Ecol. Lett 15:813–821.PubMedCrossRefGoogle Scholar
  55. Kulmatiski, A., Beard, K. H., Stevens, J. R., and Cobbold, S. M. 2008. Plant-soil feedbacks: a meta-analytical review. Ecol. Lett. 11:980–992.PubMedCrossRefGoogle Scholar
  56. Larkin, R. P. 2003. Characterization of soil microbial communities under different potato cropping systems by microbial population dynamics, substrate utilization, and fatty acid profiles. Soil Biol. Biochem. 35:1451–1466.CrossRefGoogle Scholar
  57. Li, Z. F., Yang, Y. Q., Xie, D. F., Zhu, L. F., Zhang, Z. G., and Lin, W. X. 2012. Identification of autotoxic compounds in fibrous roots of rehmannia (Rehmannia glutinosa Libosch.). PLoS ONE 7(1):e28806. doi:10.1371/journal.pone.0028806.
  58. Li, C., Li, X., Kong, W., Wu, Y., and Wang, J. 2010. Effect of monoculture soybean on soil microbial community in the Northeast China. Plant Soil 330:423–433.CrossRefGoogle Scholar
  59. Lodhi, M. A. K., Bilal, R., and Malik, K. A. 1987. Allelopathy in agroecosystems—wheat phytotoxicity and its possible roles in crop-rotation. J. Chem. Ecol. 13:1881–1891.CrossRefGoogle Scholar
  60. Lundberg, D. S., Lebeis, S. L., Paredes, S. H., Yourstone, S., Gehring, J., Malfatti, S., Tremblay, J., Engelbrektson, A., Kunin, V., Rio, T. G. D., Edgar, R. C., Eickhorst, T., Ley, R. E., Hugenholtz, P., Tringe, S. G., and Dangl, J. L. 2012. Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90.PubMedCrossRefGoogle Scholar
  61. Mangla, S., Inderjit, and Callaway, R. M. 2008. Exotic invasive plant accumulates native soil pathogens which inhibit native plants. J. Ecol 96:58–67.Google Scholar
  62. Mazzola, M. 2002. Mechanisms of natural soil suppressiveness to soilborne diseases. Anton Leeuw Int JG 81:557–564.CrossRefGoogle Scholar
  63. Mazzola, M. and Gu, Y. H. 2000. Impact of wheat cultivation on microbial communities from replant soils and apple growth in greenhouse trials. Phytopathology 90:114–119.PubMedCrossRefGoogle Scholar
  64. Mazzola, M., Granatstein, D. M., Elfving, D. C., and Mullinix, K. 2001. Suppression of specific apple root pathogens by Prassica napus seed meal amendment regardless of glucosinolate content. Phytopathology 91:673–679.PubMedCrossRefGoogle Scholar
  65. Mazzola, M., Granatstein, D. M., Elfving, D. C., Mullinix, K., and Gu, Y. H. 2002. Cultural management of microbial community structure to enhance growth of apple in replant soils. Phytopathology 92:1363–1366.PubMedCrossRefGoogle Scholar
  66. Mazzola, M., Funnell, D. L., and Raaijmakers, J. M. 2004. Wheat cultivar-specific selection of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas species from resident soil populations. Microb. Ecol. 48:338–348.PubMedCrossRefGoogle Scholar
  67. Meharg, A. A. and Killham, K. 1995. Loss of exudates from the roots of Perennial ryegrass inoculated with a range of microorganisms. Plant Soil 170:345–349.CrossRefGoogle Scholar
  68. Miller, R. W., Kleiman, R., Powell, R. G., and Putnam, A. R. 1988. Germination and growth-inhibitors of Alfalfa. J. Nat. Prod. 51:328–330.CrossRefGoogle Scholar
  69. Miller, H. G., Ikawa, M., and Peirce, L. C. 1991. Caffeic acid identified as an inhibitory compound in asparagus root filtrate. HortScience 26:1525–1527.Google Scholar
  70. Miyama, Y., Sunada, K., Fujiwara, S., and Hashimoto, K. 2009. Photocatalytic treatment of waste nutrient solution from soil-less cultivation of tomatoes planted in rice hull substrate. Plant Soil 318:275–283.CrossRefGoogle Scholar
  71. Nayyar, A., Hamel, C., Lafond, G., Gossen, B. D., Hanson, K., and Germida, J. 2009. Soil microbial quality associated with yield reduction in continuous-pea. Appl. Soil Ecol. 43:115–121.CrossRefGoogle Scholar
  72. Neal, A. L., Ahmad, S., Gordon-Weeks, R., and Ton, J. 2012. Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. Plos One 7:e35498.PubMedCrossRefGoogle Scholar
  73. Nicol, R. W., Yousef, L., Traquair, J. A., and Bernards, M. A. 2003. Ginsenosides stimulate the growth of soilborne pathogens of American ginseng. Phytochemistry 64:257–264.PubMedCrossRefGoogle Scholar
  74. Ogweno, J. O. and Yu, J. Q. 2006. Autotoxic potential in soil sickness: A re-examination. Allelopathy J. 18:93–101.Google Scholar
  75. Patrick, Z. A. 1955. The peach replant problem in Ontario. II. Toxic substances from microbial decomposition products of peach root residues. Can. J. Bot. 33:481–486.CrossRefGoogle Scholar
  76. Patrick, Z. A. and Koch, L. W. 1958. Inhibition of respiration, germination and growth by substances arising during the decomposition of certain plant residues in the soil. Can. J. Bot. 36:621–647.CrossRefGoogle Scholar
  77. Pramanik, M. H. R., Nagai, M., Asao, T., and Matsui, Y. 2000. Effects of temperature and photoperiod on phytotoxic root exudates of cucumber (Cucumis sativus) in hydroponic culture. J. Chem. Ecol. 26:1953–1967.CrossRefGoogle Scholar
  78. Rice, E. L. 1984. Allelopathy. Academic, New York.Google Scholar
  79. Ruan, X., Li, Z. H., Wang, Q., Pan, C. D., Jiang, D. A., and Wang, G. G. 2011. Autotoxicity and allelopathy of 3,4-dihydroxyacetophenone isolated from Picea schrenkiana needles. Molecules 16:8874–8893.PubMedCrossRefGoogle Scholar
  80. Russell, E. J. and Petherbridge, F. R. 1912. Investigations on “Sickness” in soil. II. “Sickness” in glasshouse soils. J. Agric. Sci. 5:86–U11.CrossRefGoogle Scholar
  81. Schippers, B., Bakker, A. W., and Bakker, P. A. H. M. 1987. Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu. Rev. Phytopathol. 25:339–358.CrossRefGoogle Scholar
  82. Schreiner, O. and Reed, H. S. 1907. The production of deleterious excretions by roots. Bull Torrey Bot. Club. 34:279–303.CrossRefGoogle Scholar
  83. Schreiner, O. and Shorey, E. C. 1909. The isolation of harmful organic substances from soils. U. S. Depart. Agric. Bureau Soils Bull. 53:1–33.Google Scholar
  84. Schreiner, O. and Sullivan, M. X. 1909. Soil fatigue caused by organic compounds. J. Biol. Chem. 6:39–50.Google Scholar
  85. Shi, K., Wang, L., Zhou, Y. H., and Yu, J. Q. 2009. Effects of calcium cyanamide on soil microbial communities and Fusarium oxysporum f. sp cucumberinum. Chemosphere 75:872–877.PubMedCrossRefGoogle Scholar
  86. Shiomi, Y., Nishiyama, M., Onizuka, T., and Marumoto, T. 1999. Comparison of bacterial community structures in the rhizoplane of tomato plants grown in soils suppressive and conducive towards bacterial wilt. Appl. Environ. Microbiol. 65:3996–4001.PubMedGoogle Scholar
  87. Singh, H. P., Batish, D. R., and Kohli, R. K. 1999. Autotoxicity: Concept, organisms, and ecological significance. Crit. Rev. Plant Sci. 18:757–772.CrossRefGoogle Scholar
  88. Sturz, A. V. and Christie, B. R. 2003. Beneficial microbial allelopathies in the root zone: The management of soil quality and plant disease with rhizobacteria. Soil Till. Res. 72:107–123.CrossRefGoogle Scholar
  89. Sunada, K., Ding, X. G., Utami, M. S., Kawashima, Y., Miyama, Y., and Hashimoto, K. 2008. Detoxification of phytotoxic compounds by TiO2 photocatalysis in a recycling hydroponic cultivation system of asparagus. J. Agric. Food Chem. 56:4819–4824.PubMedCrossRefGoogle Scholar
  90. Szabo, K. and Wittenmayer, L. 2000. Plant specific root exudations as possible cause for specific replant diseases in rosaceen. J Appl Bot-Angew Bot 74:191–197.Google Scholar
  91. Takijima, Y. and Hayashi, T. 1959. Studies on soil sickness in crop. 2. Substances exuded from root and the growth-inhibiting activity of a nutrient solution for crop cultivation. Agric. Hortic 34:1417–1418. in Japanese.Google Scholar
  92. Theron, J. and Cloete, T. E. 2000. Molecular techniques for determining microbial diversity and community structure in natural environments. Crit. Rev. Microbiol. 26:37–57.PubMedCrossRefGoogle Scholar
  93. Thevathasan, N. V., Gordon, A. M., and Voroney, R. P. 1998. Juglone (5-hydroxy-1,4 napthoquinone) and soil nitrogen transformation interactions under a walnut plantation in southern Ontario. Canada. Agrofor. Syst. 44:151–162.CrossRefGoogle Scholar
  94. Validov, S., Mavrodi, O., de la Fuente, L., Boronin, A., Weller, D., Thomashow, L., and Mavrodi, D. 2005. Antagonistic activity among 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. FEMS Microbiol. Lett. 242:249–256.PubMedCrossRefGoogle Scholar
  95. van de Voorde, T. F. J., Ruijten, M., van der Putten, W. H., and Bezemer, T. M. 2012. Can the negative plant-soil feedback of Jacobaea vulgaris be explained by autotoxicity? Basic App. Ecol 13:533–541.CrossRefGoogle Scholar
  96. Weidenhamer, J., Li, M., Allman, J., Bergosh, R., and Posner, M. 2013. Evidence does not support a role for gallic acid in Phragmites australis invasion success. J. Chem. Ecol., this issue.Google Scholar
  97. Weller, D. M., Raaijmakers, J. M., Gardener, B. B. M., and Thomashow, L. S. 2002. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu. Rev. Phytopathol 40:309–348.PubMedCrossRefGoogle Scholar
  98. Wu, F. Z., Han, X., and Wang, X. Z. 2006. Allelopathic effect of root exudates of cucumber cultivars on fusarium oxysporum. Allelopathy J. 18:163–172.Google Scholar
  99. Wu, F. Z., Wang, X. Z., and Xue, C. Y. 2009. Effect of cinnamic acid on soil microbial characteristics in the cucumber rhizosphere. Eur. J. Soil Biol. 45:356–362.CrossRefGoogle Scholar
  100. Wu, H. S., Luo, J., Raza, W., Liu, Y. X., Gu, M. A., Chen, G., Hu, X. F., Wang, J. H., Mao, Z. S., and Shen, Q. R. 2010. Effect of exogenously added ferulic acid on in vitro Fusarium oxysporum f. sp niveum. Sci. Hortic-Amsterdam 124:448–453.CrossRefGoogle Scholar
  101. Xu, M. M., Galhano, R., Wiemann, P., Bueno, E., Tiernan, M., Wu, W., Chung, I. M., Gershenzon, J., Tudzynski, B., Sesma, A., and Peter, R. J. 2012. Genetic evidence for natural product-mediated plant-plant allelopathy in rice (Oryza sativa). New Phytol. 193:570–575.PubMedCrossRefGoogle Scholar
  102. Ye, S. F., Yu, J. Q., Peng, Y. H., Zheng, J. H., and Zou, L. Y. 2004. Incidence of fusarium wilt in Cucumis sativus L. is promoted by cinnamic acid, an autotoxin in root exudates. Plant Soil 263:143–150.CrossRefGoogle Scholar
  103. Ye, S. F., Zhou, Y. H., Sun, Y., Zou, L. Y., and Yu, J. Q. 2006. Cinnamic acid causes oxidative stress in cucumber roots, and promotes incidence of fusarium wilt. Environ. Exp. Bot. 56:255–262.CrossRefGoogle Scholar
  104. Yu, J. Q. 1999. Allelopathic suppression of Pseudomonas solanacearum infection of tomato (Lycopersicon esculentum) in a tomato-Chinese chive (Allium tuberosum) intercropping system. J. Chem. Ecol. 25:2409–2417.CrossRefGoogle Scholar
  105. Yu, J. Q. and Matsui, Y. 1993. Extraction and identification of phytotoxic substances accumulated in nutrient solution for the hydroponic culture of tomato. Soil Sci. Plant Nutr. 39:691–700.CrossRefGoogle Scholar
  106. Yu, J. Q. and Matsui, Y. 1994. Phytotoxic substances in root exudates of cucumber (Cucumis sativus L). J. Chem. Ecol. 20:21–31.CrossRefGoogle Scholar
  107. Yu, J. Q. and Matsui, Y. 1997. Effects of root exudates of cucumber (Cucumis sativus) and allelochemicals on ion uptake by cucumber seedlings. J. Chem. Ecol. 23:817–827.CrossRefGoogle Scholar
  108. Yu, J. Q. and Matsui, Y. 1999. Autointoxication of Root Exudates in Pisum sativus. Acta Hort. Sinica 26:175–179.Google Scholar
  109. Yu, J. Q., Lee, K. S., and Matsui, Y. 1993. Effect of the addition of activated-charcoal to the nutrient solution on the growth of tomato in hydroponic culture. Soil Sci. Plant Nutr. 39:13–22.CrossRefGoogle Scholar
  110. Yu, J. Q., Shou, S. Y., Qian, Y. R., Zhu, Z. J., and Hu, W. H. 2000. Autotoxic potential of cucurbit crops. Plant Soil 223:147–151.CrossRefGoogle Scholar
  111. Yu, J. Q., Ye, S. F., Zhang, M. F., and Hu, W. H. 2003. Effects of root exudates and aqueous root extracts of cucumber (Cucumis sativus) and allelochemicals, on photosynthesis and antioxidant enzymes in cucumber. Biochem. Syst. Ecol. 31:129–139.CrossRefGoogle Scholar
  112. Yu, J. Q., Sun, Y., Zhang, Y., Ding, J., Xia, X. J., Xiao, C. L., Shi, K., and Zhou, Y. H. 2009. Selective trans-cinnamic acid uptake impairs [Ca2+](cyt) homeostasis and growth in Cucumis sativus L. J. Chem. Ecol. 35:1471–1477.PubMedCrossRefGoogle Scholar
  113. Zhang, Y., Gu, M., Xia, X. J., Shi, K., Zhou, Y. H., and Yu, J. Q. 2009. Effects of phenylcarboxylic acids on mitosis, endoreduplication and expression of cell cycle-related genes in roots of cucumber (Cucumis sativus L.). J. Chem. Ecol. 35:679–688.PubMedCrossRefGoogle Scholar
  114. Zhang, Y., Gu, M., Shi, K., Zhou, Y. H., and Yu, J. Q. 2010a. Effects of aqueous root extracts and hydrophobic root exudates of cucumber (Cucumis sativus L.) on nuclei DNA content and expression of cell cycle-related genes in cucumber radicles. Plant Soil 327:455–463.CrossRefGoogle Scholar
  115. Zhang, Y., Gu, M., Xia, X. J., Shi, K., Zhou, Y. H., and Yu, J. Q. 2010b. Alleviation of autotoxin-induced growth inhibition and respiration by sucrose in Cucumis sativus (L.). Allelopathy J 25:147–154.Google Scholar
  116. Zhang, S. S., Jin, Y. L., Zhu, W. J., Tang, J. J., Hu, S. J., Zhou, T. S., and Chen, X. 2010c. Baicalin released from Scutellaria baicalensis induces autotoxicity and promotes soilborn pathogens. J. Chem. Ecol. 36:329–338.PubMedCrossRefGoogle Scholar
  117. Zhang, S. S., Zhu, W. J., Wang, B., Tang, J. J., and Chen, X. 2011. Secondary metabolites from the invasive Solidago canadensis L. Accumulation in soil and contribution to inhibition of soil pathogen pythium ultimum. Appl. Soil Ecol. 48:280–286.CrossRefGoogle Scholar
  118. Zhang, H., Mallik, A., and Zeng, R. 2013. Control of Panama disease of banana by rotating and intercropping with Chinese chive (Allium tuberosum Rottler): Role of plant volatiles. J. Chem. Ecol., this issue.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Li-Feng Huang
    • 1
    • 2
  • Liu-Xia Song
    • 1
  • Xiao-Jian Xia
    • 1
  • Wei-Hua Mao
    • 1
  • Kai Shi
    • 1
  • Yan-Hong Zhou
    • 1
  • Jing-Quan Yu
    • 1
  1. 1.Department of HorticultureZijingang Campus, Zhejiang UniversityHangzhouPeoples Republic of China
  2. 2.Center for Biomedicine and HealthHangzhou Normal UniversityHangzhouPeoples Republic of China

Personalised recommendations