Journal of Chemical Ecology

, Volume 39, Issue 2, pp 323–332 | Cite as

Evidence Does not Support a Role for Gallic Acid in Phragmites australis Invasion Success

  • Jeffrey D. Weidenhamer
  • Mei Li
  • Joshua Allman
  • Robert G. Bergosh
  • Mason Posner
Article

Abstract

Gallic acid has been reported to be responsible for the invasive success of nonnative genotypes of Phragmites australis in North America. We have been unable to confirm previous reports of persistent high concentrations of gallic acid in the rhizosphere of invasive P. australis, and of high concentrations of gallic acid and gallotannins in P. australis rhizomes. The half-life of gallic acid in nonsterile P. australis soil was measured by aqueous extraction of soils and found to be less than 1 day at added concentrations up to 10,000 μg g−1. Furthermore, extraction of P. australis soil collected in North Carolina showed no evidence of gallic acid, and extractions of both rhizomes and leaves of samples of four P. australis populations confirmed to be of invasive genotype show only trace amounts of gallic acid and/or gallotannins. The detection limits were less than 20 μg gallic acid g−1 FW in the rhizome samples tested, which is approximately 0.015 % of the minimum amount of gallic acid expected based on previous reports. While the occurrence of high concentrations of gallic acid and gallotannins in some local populations of P. australis cannot be ruled out, our results indicate that exudation of gallic acid by P. australis cannot be a primary, general explanation for the invasive success of this species in North America.

Keywords

Phragmites australis Allelopathy Gallic acid Invasive species Novel weapons hypothesis 

Supplementary material

10886_2013_242_Fig6_ESM.jpg (56 kb)
Supplemental Fig. 1

Mass spectrum of 5-hydroxymethylfurfural isolated from Phragmites australis extract (A) compared to NIST library spectrum (B). (JPEG 56 kb)

10886_2013_242_MOESM1_ESM.tif (178 kb)
High Resolution Image(TIFF 178 kb)
10886_2013_242_Fig7_ESM.jpg (54 kb)
Supplemental Fig. 2

Mass spectrum of suspected 2-methoxy-4-vinylphenol isolated from Phragmites australis extract (A) compared to NIST library spectrum (B). (JPEG 54 kb)

10886_2013_242_MOESM2_ESM.tif (174 kb)
High Resolution Image(TIFF 173 kb)

References

  1. Agrell, J., McDonald, E. P., and Lindroth, R. L. 2000. Effects of CO2 and light on tree phytochemistry and insect performance. Oikos 88:259–272.CrossRefGoogle Scholar
  2. Bains, G., Kumar, A. S., Rudrappa, T., Alff, E., Hanson, T. E., and Bais, H. P. 2009. Native plant and microbial contributions to a negative plant-plant interaction. Plant Physiol. 151:1699–1700.CrossRefGoogle Scholar
  3. Barto, E. K., Hilker, M., Müller, F., Mohney, B. K., Weidenhamer, J. D., and Rillig, M. C. 2011. The fungal fast lane: Common mycorrhizal networks extend bioactive zones of allelochemicals in soils. PLoS One 6:e27195.PubMedCrossRefGoogle Scholar
  4. Bertin, C., Harmon, R., Akaogi, M., Weidenhamer, J. D., and Weston, L. A. 2009. Assessment of the phytotoxic potential of m-tyrosine in laboratory soil bioassays. J. Chem. Ecol. 35:1288–1294.PubMedCrossRefGoogle Scholar
  5. Blair, A. C., Hanson, B. D., Brunk, G. R., Marrs, R. A., Westra, P., Nissen, S. J., and Hufbauer, R. A. 2005. New techniques and findings in the study of a candidate allelochemical implicated in invasion success. Ecol. Lett. 8:1039–1047.CrossRefGoogle Scholar
  6. Blair, A. C., Weston, L. A., Nissen, S. J., Brunk, G. R., and Hufbauer, R. A. 2009. The importance of analytical techniques in allelopathy studies with the reported allelochemical catechin as an example. Biol Invasions 11:325–332.CrossRefGoogle Scholar
  7. Blum, U. 1998. Effects of microbial utilization of phenolic acids and their phenolic acid breakdown products on allelopathic interactions. J. Chem. Ecol. 24:685–708.CrossRefGoogle Scholar
  8. Blum, U., Staman, K. L., Flint, L. J., and Shafer, S. R. 2000. Induction and/or selection of phenolic acids-utilizing bulk-soil and rhizosphere bacteria and their influence on phenolic acid phytotoxicity. J. Chem. Ecol. 26:2059–2078.CrossRefGoogle Scholar
  9. Callaway, R. M. and Ridenour, W. M. 2004. Novel weapons: Invasive success and the evolution of increased competitive ability. Front. Ecol. Environ. 2:436–443.CrossRefGoogle Scholar
  10. Cecchi, A., Koskinen, W., Cheng, H., and Haider, K. 2004. Sorption–desorption of phenolic acids as affected by soil properties. Biol Fertil. Soils. 39:235–242.CrossRefGoogle Scholar
  11. Choi, S.-E., Yoon, J.-H., Choi, H.-K., and Lee, M.-W. 2009. Phenolic compounds from the root of Phragmites communis. Chem. Nat. Compd. 45:893–895.CrossRefGoogle Scholar
  12. Chung, I. M., Kim, K. H., Ahn, J. K., Chun, S. C., Kim, C. S., Kim, J. T., and Kim, S. H. 2002. Screening of allelochemicals on barnyardgrass (Echinochloa crus-galli) and identification of potentially allelopathic compounds from rice (Oryza sativa) variety hull extracts. Crop. Prot. 21:913–920.CrossRefGoogle Scholar
  13. Dalton, B. R., Blum, U., and Weed, S. B. 1989. Plant phenolic acids in soils: Sorption of ferulic acid by soil and soil components sterilized by different techniques. Soil Biol. Biochem. 21:1011–1018.CrossRefGoogle Scholar
  14. Doyle, J. J. and Doyle, J. L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19:11–15.Google Scholar
  15. Gaspar, E. M. S. M. and Lucena, A. F. F. 2009. Improved HPLC methodology for food control—furfurals and patulin as markers of quality. Food Chem. 114:1576–1582.CrossRefGoogle Scholar
  16. Gross, E. M. 2003. Differential response of tellimagrandin II and total bioactive hydrolysable tannins in an aquatic angiosperm to changes in light and nitrogen. Oikos 103:497–504.CrossRefGoogle Scholar
  17. Hagerman, A. E., Robbins, C. T., Weerasuriya, Y., Wilson, T. C., and McArthur, C. 1992. Tannin chemistry in relation to digestion. J. Range Manage. 45:57–62.CrossRefGoogle Scholar
  18. Halvorson, J. J., Gollany, H. T., Kennedy, A. C., Hagerman, A. E., Gonzalez, J. M., and Wuest, S. B. 2012. Sorption of tannin and related phenolic compounds and effects on extraction of soluble-N in soil amended with several carbon sources. Agriculture 2:52–72.CrossRefGoogle Scholar
  19. Harborne, J. B. 1984. Phytochemical Methods: A Guide to Modern Methods of Plant Analysis, 2nd ed. Chapman and Hall, London.Google Scholar
  20. Hendricks, L. G., Mossop, H. E., and Kicklighter, C. E. 2011. Palatability and chemical defense of Phragmites australis to the marsh periwinkle snail Littoraria irrorata. J. Chem. Ecol. 37:838–845.PubMedCrossRefGoogle Scholar
  21. Inderjit 2005. Soil microorganisms: An important determinant of allelopathic activity. Plant Soil 274:227–236.CrossRefGoogle Scholar
  22. Inderjit, Bajpai, D., and Rajeswari, M. S. 2010. Interaction of 8-hydroxyquinoline with soil environment mediates its ecological function. PLoS One 5:e12852.PubMedCrossRefGoogle Scholar
  23. Kaur, H., Kaur, R., Kaur, S., Baldwin, I. T., and Inderjit 2009. Taking ecological function seriously: Soil microbial communities can obviate allelopathic effects of released metabolites. PLoS One 4:e4700.PubMedCrossRefGoogle Scholar
  24. Kinraide, T. B. and Hagerman, A. E. 2010. Interactive intoxicating and ameliorating effects of tannic acid, aluminum (Al3+), copper (Cu2+), and selenate (SeO4 2−) in wheat roots: A descriptive and mathematical assessment. Physiol. Plant. 139:68–79.PubMedCrossRefGoogle Scholar
  25. Krogh, S. S., Mensz, S. J. M., Nielsen, S. T., Mortensen, A. G., Christophersen, C., and Fomsgaard, I. S. 2006. Fate of benzoxazinone allelochemicals in soil after incorporation of wheat and rye sprouts. J. Agric. Food Chem. 54:1064–1074.PubMedCrossRefGoogle Scholar
  26. Laponen, J., Ossipov, V., Lempa, K., Haukioja, E., and Pihlaja, K. 1998. Concentrations and among-compound correlations of individual phenolics in white birch leaves under air pollution stress. Chemosphere 37:1445–1456.CrossRefGoogle Scholar
  27. Li, F.-M. and Hu, H.-Y. 2005. Isolation and characterization of a novel antialgal allelochemical from Phragmites communis. Appl. Environ. Microbiol. 11:6545–6553.CrossRefGoogle Scholar
  28. Mal, T. K. and Narine, L. 2004. The biology of Canadian weeds. 129. Phragmites australis (Cav.) Trin. ex Steud. Can. J. Plant. Sci. 84:365–396.CrossRefGoogle Scholar
  29. Ramírez-Jiménez, A., García-Villanova, B., and Guerra-Hernández, E. 2000. Hydroxymethylfurfural and methylfurfural content of selected bakery products. Food Res. Int. 33:833–838.CrossRefGoogle Scholar
  30. Reigosa, M. J., Souto, X. C., and González, L. 1999. Effect of phenolic compounds on the germination of six weeds species. Plant. Growth. Regul. 28:83–88.CrossRefGoogle Scholar
  31. Rudrappa, T. and Bais, H. P. 2008. Genetics, novel weapons and rhizospheric microcosmal signaling in the invasion of Phragmites australis. Plant Signal. Behav. 3:1–5.PubMedCrossRefGoogle Scholar
  32. Rudrappa, T., Bonsall, J., Gallagher, J. L., Seliskar, D. M., and Bais, H. P. 2007. Root-secreted allelochemical in the noxious weed Phragmites australis deploys a reactive oxygen species response and microtubule assembly disruption to execute rhizotoxicity. J. Chem. Ecol. 33:1898–1918.PubMedCrossRefGoogle Scholar
  33. Rudrappa, T., Choi, Y. S., Levia, D. F., Legates, D. R., Lee, K. H., and Bais, H. P. 2009. Phragmites australis root secreted phytotoxin undergoes photo-degradation to execute severe phytotoxicity. Plant Signal. Behav. 4:506–513.PubMedCrossRefGoogle Scholar
  34. Salminen, J.-P., Ossipov, V., Haukioja, E., and Pihlaja, K. 2001. Seasonal variation in the content of hydrolysable tannins in leaves of Betula pubescens. Phytochemistry 57:15–22.PubMedCrossRefGoogle Scholar
  35. Saltonstall, K. 2002. Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc. Natl. Acad. Sci. USA 99:2445–2449.PubMedCrossRefGoogle Scholar
  36. Saltonstall, K. 2003. A rapid method for identifying the origin of North American Phragmites populations using RFLP analysis. Wetlands 23:1043–1047.CrossRefGoogle Scholar
  37. Schmidt, S. K. 1988. Degradation of juglone by soil bacteria. J. Chem. Ecol. 14:1561–1571.CrossRefGoogle Scholar
  38. Schmidt, M. A., Halvorson, J. J., Gonzalez, J. M., and Hagerman, A. E. 2012. Kinetics and binding capacity of six soils for structurally defined hydrolysable and condensed tannins and related phenols. J Soils. Sediments. 12:366–375.CrossRefGoogle Scholar
  39. Sosa, T., Valares, C., Alías, J. C., and Lobón, N. C. 2010. Persistence of flavonoids in Cistus ladanifer soils. Plant Soil 337:51–63.CrossRefGoogle Scholar
  40. Weidenhamer, J. D. and Romeo, J. T. 1989. Allelopathic properties of Polygonella myriophylla: Field evidence and bioassays. J. Chem. Ecol. 15:1957–1969.CrossRefGoogle Scholar
  41. Weidenhamer, J. D. and Romeo, J. T. 2004. Allelochemicals of Polygonella myriophylla: Chemistry and soil degradation. J. Chem. Ecol. 30:1061–1078.Google Scholar
  42. Weidenhamer, J. D., Hartnett, D. C., and Romeo, J. T. 1989. Density-dependent phytotoxicity: Distinguishing resource competition and allelopathic interference in plants. J. App. Ecol. 26:613–624.CrossRefGoogle Scholar
  43. Weidenhamer, J. D. and Romeo, J. T. 2005. Allelopathy as a mechanism for resisting invasion: The case of Polygonella myriophylla, pp. 167–177, in Inderjit (ed.) Invasive Plants: Ecological and Agricultural Aspects. Birkhauser Verlag, Switzerland.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jeffrey D. Weidenhamer
    • 1
  • Mei Li
    • 1
  • Joshua Allman
    • 2
  • Robert G. Bergosh
    • 1
  • Mason Posner
    • 2
  1. 1.Department of ChemistryAshland UniversityAshlandUSA
  2. 2.Department of Biology/ToxicologyAshland UniversityAshlandUSA

Personalised recommendations