Journal of Chemical Ecology

, Volume 39, Issue 1, pp 67–75 | Cite as

Wax Lipids Signal Nest Identity in Bumblebee Colonies

  • Ann-Marie Rottler
  • Stefan Schulz
  • Manfred Ayasse


The signalling functions of cuticular lipids, particularly cuticular hydrocarbons, have gained considerable attention in social insect communication. Information transfer between individuals by means of these substances has been examined extensively. However, communication with cuticular lipids is not limited to inter-individual recognition. Cuticular compounds can also have a signalling function in the nest environment. Workers of the bumblebee Bombus terrestris leave cuticular lipid traces, so-called footprints, that mark their nest entrance. In addition, there is evidence that bumblebees sense nesting material to identify their colony. In this study, we examined the signalling potential of bumblebee wax, and tested if bumblebee workers are able to identify their colony with the help of wax scent. Chemical analyses of wax extracts using coupled gas chromatography–mass spectrometry showed that wax from colonies of the bumblebee B. terrestris contained a complex blend of cuticular lipids, dominated by hydrocarbons and wax esters. Comparing the relative compound amounts of wax samples from different colonies, we found that wax scent patterns varied with nest identity. Olfactometer bioassays showed that bumblebees were able to discriminate between wax scents from their own and a foreign colony. Our findings suggest that wax emits characteristic olfactory profiles that are used by workers to recognize their colony.


Bombus terrestris Chemical signalling Cuticular hydrocarbons Esters Nest recognition Wax scent 



This study was funded by the German Research Foundation (AY 12/3-1) and the PhD program of the Carl Zeiss Foundation.

Supplementary material

10886_2012_229_MOESM1_ESM.pdf (148 kb)
ESM 1 (PDF 147 kb)


  1. Ayasse, M., Birnbaum, J., Tengö, J., van Doorn, A., Taghizadeh, T., and Francke, W. 1999. Caste- and colony-specific chemical signals on eggs of the bumble bee, Bombus terrestris L. (Hymenoptera: Apidae). Chemoecology 9:119–126.CrossRefGoogle Scholar
  2. Ayasse, M., Marlovits, T., Tengo, J., Taghizadeh, T., and Francke, W. 1995. Are there pheromonal dominance signals in the bumblebee Bombus hypnorum L (Hymenoptera, Apidae)? Apidologie 26:163–180.CrossRefGoogle Scholar
  3. Benjamini, Y. and Hochberg, Y. 1995. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Stat. Soc. Ser. B 57:289–300.Google Scholar
  4. Billen, J. and Morgan, E. D. 1998. Pheromone communication in social insects: Sources and secretions, pp. 3–33, in R. K. Vander Meer, M. D. Breed, K. E. Espelie, and M. L. Winston (eds.), Pheromone Communication in Social Insects. Westview Press, Boulder.Google Scholar
  5. Blomquist, G. J. and Bagnères, A. G. 2010. Insect hydrocarbons: Biology, Biochemistry, and Chemical Ecology. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  6. Blomquist, G. J., Chu, A. J., and Remaley, S. 1980. Biosynthesis of wax in the honeybee, Apis mellifera L. Insect Biochem 10:313–321.CrossRefGoogle Scholar
  7. Breed, M. D. 1998. Recognition pheromones of the honey bee: The chemistry of nestmate recognition. BioScience 48:463–470.CrossRefGoogle Scholar
  8. Breed, M. D., Page, R. E., Hibbard, B. E., and Bjostad, L. B. 1995. Interfamily variation in comb wax hydrocarbons produced by honey bees. J. Chem. Ecol. 21:1329–1338.CrossRefGoogle Scholar
  9. Breed, M. D. and Stiller, T. M. 1992. Honey bee, Apis mellifera, nestmate discrimination: Hydrocarbon effects and the evolutionary implications of comb choice. Anim. Behav. 43:875–883.CrossRefGoogle Scholar
  10. Breed, M. D., Williams, K. R., and Fewell, J. H. 1988. Comb wax mediates the acquisition of nest-mate recognition cues in honey bees. Proc. Natl. Acad. Sci. U. S. A 85:8766–8769.PubMedCrossRefGoogle Scholar
  11. Brüschweiler, H., Felber, H., and Schwager, F. 1989. Bienenwachs—Zusammensetzung und Beurteilung der Reinheit durch gaschromatographische Analyse. Eur. J. Lipid Sci. Technol 91:73–79.Google Scholar
  12. Bunk, E., Sramkova, A., and Ayasse, M. 2010. The role of trail pheromones in host nest recognition of the social parasitic bumblebees Bombus bohemicus and Bombus rupestris (Hymenoptera: Apidae). Chemoecology 20:189–198.CrossRefGoogle Scholar
  13. Cederberg, B. 1977. Evidence for trail marking in Bombus terrestris workers (Hymenoptera, Apidae). Zoon 5:143–146.Google Scholar
  14. Chittka, L., Williams, N. M., Rasmussen, H., and Thomson, J. D. 1999. Navigation without vision: Bumblebee orientation in complete darkness. Proc. R. Soc. Lond. Ser. B 266:45–50.CrossRefGoogle Scholar
  15. Couvillon, M. J., Caple, J. P., Endsor, S. L., Kärcher, M., Russell, T. E., Storey, D. E., and Ratnieks, F. L. 2007. Nest-mate recognition template of guard honeybees (Apis mellifera) is modified by wax comb transfer. Biol. Lett 3:228–230.PubMedCrossRefGoogle Scholar
  16. Crozier, R. H. and Dix, M. W. 1979. Analysis of two genetic models for the innate components of colony odor in social Hymenoptera. Behav. Ecol. Sociobiol. 4:217–224.CrossRefGoogle Scholar
  17. Dani, F. R., Jones, G. R., Corsi, S., Beard, R., Pradella, D., and Turillazzi, S. 2005. Nestmate recognition cues in the honey bee: Differential importance of cuticular alkanes and alkenes. Chem. Senses 30:477–489.PubMedCrossRefGoogle Scholar
  18. Da Cruz Landim, C. 1963. Evaluation of the wax and scent glands in the Apinae (Hymenoptera: Apidae). J. N. Y. Entomol. Soc. 21:2–13.Google Scholar
  19. D’Ettorre, P. and Moore, A. J. 2008. Chemical communication and the coordination of social interactions in insects, pp. 81–96, in P. D’Ettorre and D. P. Hughes (eds.), Sociobiology of Communication: An Interdisciplinary Perspective. Oxford University Press, Oxford.Google Scholar
  20. D’Ettorre, P., Wenseleers, T., Dawson, J., Hutchinson, S., Boswell, T., and Ratnieks, F. L. W. 2006. Wax combs mediate nestmate recognition by guard honeybees. Anim. Behav. 71:773–779.CrossRefGoogle Scholar
  21. Espelie, K. E., Wenzel, J. W., and Chang, G. 1990. Surface lipids of social wasp Polistes metricus Say and its nest and nest pedicel and their relation to nestmate recognition. J. Chem. Ecol. 16:2229–2242.CrossRefGoogle Scholar
  22. Ferguson, D., Gamboa, G. J. J., and Julia, K. 1987. Discrimination between natal and non-natal nests by the social wasps Dolichovespula maculata and Polistes fuscatus (Hymenoptera: Vespidae). J. Kansas Entomol. Soc. 60:65–69.Google Scholar
  23. Foster, R. L. and Gamboa, G. J. 1989. Nest entrance marking with colony specific odors by the bumble bee Bombus occidentalis (Hymenoptera: Apidae). Ethology 81:273–278.CrossRefGoogle Scholar
  24. Francke, W. and Schulz, S. 2010. Pheromones of terrestrial invertebrates, pp. 153–224, in L. Mander and H.-W. Liu (eds.), Comprehensive Natural Products Chemistry II, Vol. 4. Elsevier, Oxford.CrossRefGoogle Scholar
  25. Free, J. B. 1987. Pheromones of Social Bees. Comstock Pub. Associates, Ithaca.Google Scholar
  26. Fröhlich, B., Riederer, M., and Tautz, J. 2001. Honeybees discriminate cuticular waxes based on esters and polar components. Apidologie 32:265–274.CrossRefGoogle Scholar
  27. Fröhlich, B., Tautz, J., and Riederer, M. 2000. Chemometric classification of comb and cuticular waxes of the honeybee Apis mellifera carnica. J. Chem. Ecol. 26:123–137.CrossRefGoogle Scholar
  28. Gamboa, G. J. 2004. Kin recognition in eusocial wasps. Ann. Zool. Fenn. 41:789–808.Google Scholar
  29. Gamboa, G. J., Foster, R. L., and Richards, K. W. 1987. Intraspecific nest and brood recognition by queens of the bumble bee, Bombus occidentalis (Hymenoptera: Apidae). Can. J. Zool. 65:2893–2897.CrossRefGoogle Scholar
  30. Gamboa, G. J., Reeve, H. K., Ferguson, I. D., and Wacker, T. L. 1986. Nestmate recognition in social wasps: The origin and acquisition of recognition odours. Anim. Behav. 34:685–695.CrossRefGoogle Scholar
  31. Greene, M. 2010. Cuticular hydrocarbon cues in the formation and maintenance of insect social groups, pp. 244–253, in G. J. Blomquist and A. G. Bagnères (eds.), Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  32. Greene, M. J. and Gordon, D. M. 2003. Cuticular hydrocarbons inform task decisions. Nature 423:32.PubMedCrossRefGoogle Scholar
  33. Hadley, N. 1994. Water Relations of Terrestrial Arthropods. Academic, San Diego.Google Scholar
  34. Hannonen, M., Sledge, M. F., Turillazzi, S., and Sundstrom, L. 2002. Queen reproduction, chemical signalling and worker behaviour in polygyne colonies of the ant Formica fusca. Anim. Behav. 64:477–485.CrossRefGoogle Scholar
  35. Hefetz, A. 1998. Exocrine glands and their products in non-Apis bees: Chemical, functional and evolutionary perspectives, pp. 236–256, in R. K. Vander Meer, M. D. Breed, K. E. Espelie, and M. L. Winston (eds.), Pheromone Communication in Social Insects. Westview Press, Boulder.Google Scholar
  36. Hefetz, A., Taghizadeh, T., and Francke, W. 1996. The exocrinology of the queen bumble bee Bombus terrestris (Hymenoptera: Apidae, Bombini). Z. Naturforsch. 51:409–422.Google Scholar
  37. Hölldobler, B. and Wilson, E. O. 2008. The Superorganism: The Beauty, Elegance, and Strangeness of Insect Societies. Norton, New York.Google Scholar
  38. Hölldobler, B. and Michener, C. D. 1980. Mechanisms of identification and discrimination in social Hymenoptera, pp. 35–58, in H. Markl (ed.), Evolution of Social Behaviour: Hypotheses and Empirical Tests. Weinheim, Verlag Chemie.Google Scholar
  39. Howard, R. W. and Blomquist, G. J. 2005. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu. Rev. Entomol. 50:371–393.PubMedCrossRefGoogle Scholar
  40. Kreuter, K., Bunk, E., Lückemeyer, A., Twele, R., Francke, W., and Ayasse, M. 2012. How the social parasitic bumblebee Bombus bohemicus sneaks into power of reproduction. Behav. Ecol. Sociobiol. 66:475–486.CrossRefGoogle Scholar
  41. Kreuter, K., Twele, R., Francke, W., and Ayasse, M. 2010. Specialist Bombus vestalis and generalist Bombus bohemicus use different odour cues to find their host Bombus terrestris. Anim. Behav. 80:297–302.CrossRefGoogle Scholar
  42. Kukuk, P. F., Breed, M. D., Sobti, A., and Bell, W. J. 1977. The contributions of kinship and conditioning to nest recognition and colony member recognition in a primitively eusocial bee, Lasioglossum zephyrum (Hymenoptera: Halictidae). Behav. Ecol. Sociobiol. 2:319–327.CrossRefGoogle Scholar
  43. Kurstjens, S., Hepburn, H., Schoening, F., and Davidson, B. 1985. The conversion of wax scales into comb wax by African honeybees. J. Comp. Physiol. B. 156:95–102.CrossRefGoogle Scholar
  44. le Conte, Y. and Hefetz, A. 2008. Primer pheromones in social hymenoptera. Annu. Rev. Entomol. 53:523–542.PubMedCrossRefGoogle Scholar
  45. Liebig, J. 2010. Hydrocarbon profiles indicate fertility and dominance status in ant, bee, and wasp colonies, pp. 254–281, in G. J. Blomquist and A. G. Bagnères (eds.), Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  46. Lopez-Vaamonde, C., Koning, J. W., Brown, R. M., Jordan, W. C., and Bourke, A. F. G. 2004. Social parasitism by male-producing reproductive workers in a eusocial insect. Nature 430:557–560.PubMedCrossRefGoogle Scholar
  47. McLafferty, F. W. and Turecek, F. 1993. Interpretation of Mass Spectra, 4th ed. University Science, Mill Welley.Google Scholar
  48. Menzel, R., DE Marco, R., and Greggers, U. 2006. Spatial memory, navigation and dance behaviour in Apis mellifera. J. Comp. Physiol. A. 192:889–903.CrossRefGoogle Scholar
  49. Michener, C. D. 1969. Evolution of the nests of bees. Am. Zool. 4:227–239.Google Scholar
  50. Monnin, T. 2006. Chemical recognition of reproductive status in social insects. Ann. Zool. Fenn. 43:515–530.Google Scholar
  51. Ramsay, J. 1935. The evaporation of water from the cockroach. J. Exp. Biol. 12:373–383.Google Scholar
  52. Saleh, N., Scott, A., Bryning, G., and Chittka, L. 2007. Distinguishing signals and cues: Bumblebees use general footprints to generate adaptive behaviour at flowers and nest. Arthropod-Plant Interactions 1:119–127.CrossRefGoogle Scholar
  53. Singer, T. and Espelie, K. 1996. Nest surface hydrocarbons facilitate nestmate recognition for the social wasp, Polistes metricus Say (Hymenoptera: Vespidae). J. Insect Behav. 9:857–870.CrossRefGoogle Scholar
  54. Snodgrass, R. E. 1956. Anatomy of The Honey Bee. Cornell University Press, London.Google Scholar
  55. Sramkova, A., Schulz, C., Twele, R., Francke, W., and Ayasse, M. 2008. Fertility signals in the bumblebee Bombus terrestris. Naturwissenschaften 95:515–522.PubMedCrossRefGoogle Scholar
  56. Schulz, S. 2001. Composition of the silk lipids of the spider Nephila clavipes. Lipids 36:637–647.PubMedCrossRefGoogle Scholar
  57. Tengö, J., Hefetz, A., Bertsch, A., Schmitt, U., Lübke, G., and Francke, W. 1991. Species specificity and complexity of Dufour’s gland secretion of bumble bees. Comp. Biochem. Physiol. B 99:641–646.Google Scholar
  58. van Zweden, J. S. and D’Ettorre, P. 2010. Nestmate recognition in social insects and the role of hydrocarbons, pp. 222–243, in G. J. Blomquist and A. G. Bagnères (eds.), Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  59. Velthuis, H. H. W. and van Doorn, A. 2006. A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie 37:421–451.CrossRefGoogle Scholar
  60. von Frisch, K. 1967. The Dance Language and Orientation of Bees. Harvard University Press, Cambridge.Google Scholar
  61. Wcislo, W. T. 1992. Nest localization and recognition in a solitary bee, Lasioglossum (Dialictus) figueresi Wcislo (Hymenoptera: Halictidae), in relation to sociality. Ethology 92:108–123.CrossRefGoogle Scholar
  62. Wilson, E. O. and Bossert, W. H. 1963. Chemical communication among animals. Recent Prog. Horm. Res. 19:673–716.PubMedGoogle Scholar
  63. Witjes, S. and Eltz, T. 2009. Hydrocarbon footprints as a record of bumblebee flower visitation. J. Chem. Ecol. 35:1320–1325.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ann-Marie Rottler
    • 1
  • Stefan Schulz
    • 2
  • Manfred Ayasse
    • 1
  1. 1.Institute of Experimental EcologyUniversity of UlmUlmGermany
  2. 2.Institut für Organische ChemieTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations