Journal of Chemical Ecology

, Volume 38, Issue 12, pp 1528–1538 | Cite as

Semiochemicals from Herbivory Induced Cotton Plants Enhance the Foraging Behavior of the Cotton Boll Weevil, Anthonomus grandis

  • D. M. Magalhães
  • M. Borges
  • R. A. Laumann
  • E. R. Sujii
  • P. Mayon
  • J. C. Caulfield
  • C. A. O. Midega
  • Z. R. Khan
  • J. A. Pickett
  • M. A. Birkett
  • M. C. Blassioli-Moraes
Article

Abstract

The boll weevil, Anthonomus grandis, has been monitored through deployment of traps baited with aggregation pheromone components. However, field studies have shown that the number of insects caught in these traps is significantly reduced during cotton squaring, suggesting that volatiles produced by plants at this phenological stage may be involved in attraction. Here, we evaluated the chemical profile of volatile organic compounds (VOCs) emitted by undamaged or damaged cotton plants at different phenological stages, under different infestation conditions, and determined the attractiveness of these VOCs to adults of A. grandis. In addition, we investigated whether or not VOCs released by cotton plants enhanced the attractiveness of the aggregation pheromone emitted by male boll weevils. Behavioral responses of A. grandis to VOCs from conspecific-damaged, heterospecific-damaged (Spodoptera frugiperda and Euschistus heros) and undamaged cotton plants, at different phenological stages, were assessed in Y-tube olfactometers. The results showed that volatiles emitted from reproductive cotton plants damaged by conspecifics were attractive to adults boll weevils, whereas volatiles induced by heterospecific herbivores were not as attractive. Additionally, addition of boll weevil-induced volatiles from reproductive cotton plants to aggregation pheromone gave increased attraction, relative to the pheromone alone. The VOC profiles of undamaged and mechanically damaged cotton plants, in both phenological stages, were not different. Chemical analysis showed that cotton plants produced qualitatively similar volatile profiles regardless of damage type, but the quantities produced differed according to the plant’s phenological stage and the herbivore species. Notably, vegetative cotton plants released higher amounts of VOCs compared to reproductive plants. At both stages, the highest rate of VOC release was observed in A. grandis-damaged plants. Results show that A. grandis uses conspecific herbivore-induced volatiles in host location, and that homoterpene compounds, such as (E)-4,8-dimethylnona-1,3,7–triene and (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene and the monoterpene (E)-ocimene, may be involved in preference for host plants at the reproductive stage.

Keywords

Host plant Herbivore-induced plant volatiles Phenological stages Terpenoids Coleoptera Curculionidae 

References

  1. Addesso, K. M. and McAuslane, H. J. 2009. Pepper weevil attraction to volatiles from host and nonhost plants. Environ. Entomol. 38:216–224.PubMedCrossRefGoogle Scholar
  2. Addesso, K. M., McAuslane, H. J., and Alborn, H. T. 2011. Attraction of pepper weevil to volatiles from damaged pepper plants. Entomol. Exp. App. 138:1–11.CrossRefGoogle Scholar
  3. Beltrão, N. E. M. and Azevedo, D. M. P. 2008. pp. 12–17, O agronegócio do algodão no Brasil. Embrapa Informação Tecnológica, Brasília.Google Scholar
  4. Bernasconi, M. L., Turlings, T. C. J., Ambrosetti, L., Bassetti, P., and Dorn, S. 1998. Herbivore-induced emissions of maize volatiles repel the corn leaf aphid, Rhopalosiphum maidis. Entomol Exp. App. 87:133–142.CrossRefGoogle Scholar
  5. Bichão, H., Borg-Karlson, A. K., Araújo, J., and Mustaparta, H. 2005. Five types of olfactory receptor neurons in the strawberry blossom weevil Anthonomus rubi: selective responses to inducible host plants volatiles. Chem. Senses 30:153–170.PubMedCrossRefGoogle Scholar
  6. Bolter, C. J., Dicke, M., Van-Loon, J. J. A., Visser, J. H., and Posthumus, M. A. 1997. Attraction of Colorado potato beetle to herbivore-damaged plants during herbivory and after its termination. J. Chem. Ecol. 23:1003–1023.CrossRefGoogle Scholar
  7. Borges, M., Laumann, R. A., Silva, C. A. S., Moraes, M. C. B., Santos, H. M., and Tibúrcio, D. T. 2006. pp. 18, Metodologias de criação e manejo de colônias de percevejos da soja (Hemiptera-Pentatomidae) para estudos de comportamento e ecologia química. Documento No 182. Editora Embrapa, Brasília, Brasil.Google Scholar
  8. Borges, M., Millar, J. G., Laumann, R. A., and Moraes, M. C. B. 2007. A male-produced sex pheromone from the neotropical redbanded stink bug, Piezodorus guildinii (W.). J. Chem. Ecol. 33:1235–1248.PubMedCrossRefGoogle Scholar
  9. Bruce, T. J. A., Midega, C. A. O., Birkett, M. A., Pickett, J. A., and Khan, Z. R. 2010. Is quality more important than quantity? Insect behavioural responses to changes in a volatile blend after stemborer oviposition on an African grass. Biol. Lett. 6:314–317.PubMedCrossRefGoogle Scholar
  10. Dickens, J. C. 1984. Olfaction in the boll weevil, Anthonomus grandis Boh. (Coleoptera: Curculionidae): eletroantennogram studies. J. Chem. Ecol. 10:1759–1785.CrossRefGoogle Scholar
  11. Dickens, J. C. 1985. Orientation of boll weevil, Anthonomus grandis Boh. (Coleoptera: Curculionidae), to pheromone and volatile host compound in the laboratory. J. Chem. Ecol. 12:91–98.CrossRefGoogle Scholar
  12. Dickens, J. C. 1989. Green leaf volatiles enhance aggregation pheromone of boll weevil, Anthonomus grandis. Entomol. Exp. App. 52:191–203.CrossRefGoogle Scholar
  13. Dickens, J. C., Jang, E. B., Light, D. M., and Alford, A. R. 1990. Enhancement of insect pheromone responses by green leaf volatiles. Naturwissenschaften 77:29–31.CrossRefGoogle Scholar
  14. Hare, J. D. 2011. Ecological role of volatiles produced by plants in response to damage by herbivorous insects. Annu. Rev. Entomol. 56:161–180.PubMedCrossRefGoogle Scholar
  15. Hegde, M., Oliveira, J. N., Costa, J. G., Bleicher, E., Santana, A. E. G., Bruce, T. J. A., Caulfield, J., Dewhirst, S. Y., Woodcock, C. M., Pickett, J. A., and Birkett, M. A. 2011. Identification of semiochemical released by cotton, Gossypium hirsutum, upon infestation by the cotton aphid, Aphis gossypii. J. Chem. Ecol. 37:741–750.PubMedCrossRefGoogle Scholar
  16. Kalberer, N. M., Turlings, T. C. J., and Rahier, M. 2001. Attraction of leaf beetle (Oreina cacaliae) to damaged host plants. J. Chem. Ecol. 27:647–661.PubMedCrossRefGoogle Scholar
  17. Kalinova, B., Stransky, K., Harmatha, J., Ctvrtecka, R., and Zd’arek, J. 2000. Can chemical cues from blossom buds influence cultivar preference in the apple blossom weevil (Anthonomus pomorum)? Entomol. Exp. Appl. 95:47–52.CrossRefGoogle Scholar
  18. Leopold, E. J. 1990. Selective hydroboration of a 1, 3, 7-triene: homogeraniol. Org. Synth. 64:164–171.Google Scholar
  19. Loughrin, J. H., Manukian, A., Heath, R. R., and Tumlinson, J. H. 1995. Volatiles emitted by different cotton varieties damaged by feeding beet armyworm larvae. J. Chem. Ecol. 21:1217–1222.CrossRefGoogle Scholar
  20. Loughrin, J. H., Potter, D. A., Hamilton-Kemp, T. R., and Byers, M. E. 1996. Role of feeding-induced plant volatiles in aggregative behavior of the Japanese beetle (Coleoptera: Scarabaeidae). Environ. Entomol. 25:1188–1191.Google Scholar
  21. McCall, P. J., Turlings, T. C. J., Loughrin, J., Proveaux, A. T., and Tumlinson, J. H. 1994. Herbivore-induced volatile emissions from cotton (Gossypium hirsutum L.) seedlings. J. Chem. Ecol. 20:3039–3049.CrossRefGoogle Scholar
  22. McKibben, G. H., Mitchell, E. B., Scott, W. P., and Hedin, P. A. 1977. Boll weevils are attracted to volatile oils from cotton plants. Environ. Entomol. 6:804–806.Google Scholar
  23. Meiners, T., Hacker, N. K., Anderson, P., and Hilker, M. 2005. Response of the elm leaf beetle to host plants induced by oviposition and feeding: the infestation rate matters. Entomol. Exp. Appl. 115:171–177.CrossRefGoogle Scholar
  24. Michereff, M. F. F., Laumann, R. A., Borges, M., Michereff Filho, M., Diniz, I. R., Farias-Neto, A. L., and Moraes, M. C. B. 2011. Volatiles mediating plant-herbivory-natural enemy interaction in resistant and susceptible soybean cultivars. J. Chem. Ecol. 37:273–285.PubMedCrossRefGoogle Scholar
  25. Moraes, M. C. B., Laumann, R. A., Sujii, E. R., Pires, C. S. S., Borges, M., and Millar, J. G. 2005. Sex attractant pheromone from the neotropical red-shouldered stink bug, Thyanta perditor (F.). J. Chem. Ecol. 31:1415–1427.PubMedCrossRefGoogle Scholar
  26. Moraes, M. C. B., Laumann, R. A., Pareja, M., Sereno, F. T. P. S., Michereff, M. F. F., Birkett, M. A., Pickett, J. A., and Borges, M. 2009. Attraction of the stink bug egg parasitoid Telenomus podisi to defence signals from soybean activated by treatment with cis-jasmone. Entomol. Exp. Appl. 131:178–188.CrossRefGoogle Scholar
  27. Moraes, M. C. B., Laumann, R. A., Aquino, M. F. S., Paula, D. P., and Borges, M. 2011. Effect of Bt genetic engineering on indirect defense in cotton via a tritrophic interaction. Transgenic Res. 20:99–107.PubMedCrossRefGoogle Scholar
  28. Nist. 2011. Software NIST/EPA/NIH Mass Spectral Library 2011.Google Scholar
  29. Nist. 2008. Software NIST/EPA/NIH Mass Spectral Library 2008.Google Scholar
  30. Nunes, J. C. S. and Fernandes, P. M. 2000. Parasitismo do bicudo do algodoeiro (Anthonomus grandis) em botões florais do algodoeiro, no município de Goiânia-GO. Pesqui. Agropecu. Trop. 30:13–15.Google Scholar
  31. Paré, P. W. and Tumlinson, J. H. 1998. Cotton volatiles synthesized and released distal to the site of insect damage. Phytochemistry 47:521–526.CrossRefGoogle Scholar
  32. Paré, P. W. and Tumlinson, J. H. 1996. Volatile signals in response to herbivore feeding. Fla. Entomol. 79:93–103.CrossRefGoogle Scholar
  33. Pherobase. 2011. Database of pheromone and other semiochemicals. <http://www.pherobase.com/database/kovats/kovats-index.php>.
  34. R Development Core Team. 2009. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
  35. Ribeiro, P. A., Sujii, E. R., Diniz, I. R., Medeiros, M. A., Salgado-Labouriau, M. L., Branco, M. C., Pires, C. S. S., and Fontes, E. M. G. 2010. Alternative food sources and overwintering feeding behavior of the boll weevil, Anthonomus grandis Boehman (Coleoptera: Curculionidae) under the tropical conditions of Central Brazil. Neotropical Entomol. 39:28–34.CrossRefGoogle Scholar
  36. Rochat, D., Meillour, P. N., Esteban-Duran, J. R., Malosse, C., Perthuis, B., Morin, J. P., and Descoins, C. 2000. Identification of pheromone synergists in the American palm weevil, Rhynchophorus palmarum, and attraction of related Dynamis borassi. J. Chem. Ecol. 26:155–187.CrossRefGoogle Scholar
  37. Rodriguez-Saona, C., Crafts-Brandner, S. J., and Cañas, L. A. 2003. Volatile emissions triggered by multiple herbivore damage: beet armyworm and whitefly feeding on cotton plants. J. Chem. Ecol. 29:2539–2550.PubMedCrossRefGoogle Scholar
  38. Röse, U. R. S., Manukian, A., Heath, R. R., and Tumlinson, J. H. 1996. Volatile semiochemicals released from undamaged cotton leaves (a systemic response of living plants to caterpillar damage). Plant Physiol. 111:487–495.PubMedGoogle Scholar
  39. Röse, U. R. S., Lewis, W. J., and Tumlinson, J. H. 1998. Specificity of systemically released cotton volatiles as attractants for specialist and generalist parasitoid wasps. J. Chem. Ecol. 24:303–319.CrossRefGoogle Scholar
  40. Rummel, D. R. and Curry, G. L. 1986. Dinâmica populacional e níveis de dano econômico, pp. 201–220, in S. Barbosa, M. J. Lukefarh, and R. B. Sobrinho (eds.), O Bicudo do Algodoeiro, Vol. 4. Departamento de Difusão Tecnológica Documentos, Embrapa.Google Scholar
  41. Schmidt, F. G. V., Monnerat, R. G., Borges, M., and Carvalho, R. S. 2001. pp. 20, Metodologia de Criação de Insetos para Avaliação de Agentes Entomapatogênicos. Circular Técnica No 11. Ed. Embrapa, Brasília, Brasil.Google Scholar
  42. Showler, A. T. 2004. Influence of cotton fruit stages as food sources on boll weevil (Coleoptera:Curculionidae) fecundity and oviposition. J. Econ. Entomol. 97:1330–1334.PubMedCrossRefGoogle Scholar
  43. Stamps, J. and Krishnan, V. V. 2005. Nonintuitive cue use in habitat selection. Ecology 86:2860–2867.CrossRefGoogle Scholar
  44. \Szendrei, Z., Malo, E., Stelinski, L., and Rodriguez-Saona, C. 2009. Response of cranberry weevil (Coleoptera: Curculionidae) to host plant volatiles. Entomol. Soc. Am. 38:861–869.Google Scholar
  45. Tumlinson, J. H., Hardee, D. D., Gueldner, R. C., Thompson, A. C., Hedin, P. A., and Minyard, J. P. 1969. Sex pheromone produced by the male boll weevil: isolation, identification, and synthesis. Science 166:1010–1012.PubMedCrossRefGoogle Scholar
  46. Turlings, T. C. J., Tumlinson, J. H., and Lewis, W. J. 1993. An elicitor in caterpillar oral secretion that induces corn seedlings to emit chemical signals attractive to parasitic wasps. J. Chem. Ecol. 19:411–425.CrossRefGoogle Scholar
  47. Turlings, T. C. J., Bernasconi, M., Bertossa, R., Bigler, F., Caloz, G., and Dorn, S. 1998. The induction of volatile emissions in maize by three herbivore species with different feeding habits: possible consequences for their natural enemies. Biol. Control. 11:122–129.CrossRefGoogle Scholar
  48. White, J. R. and Rummel, D. 1978. Re-emergence profile of over-wintered boll weevils an entry into cotton. Environ. Entomol. 7:7–14.Google Scholar
  49. Yang, Z., Bengtsson, M., and Witzgall, P. 2004. Host plant volatiles synergize response to sex pheromone in codling moth, Cydia pomonella. J. Chem. Ecol. 30:619–629.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • D. M. Magalhães
    • 1
    • 2
  • M. Borges
    • 1
  • R. A. Laumann
    • 1
  • E. R. Sujii
    • 1
    • 2
  • P. Mayon
    • 3
  • J. C. Caulfield
    • 3
  • C. A. O. Midega
    • 4
  • Z. R. Khan
    • 4
  • J. A. Pickett
    • 3
  • M. A. Birkett
    • 3
  • M. C. Blassioli-Moraes
    • 1
    • 5
  1. 1.Embrapa Genetic Resources and BiotechnologyBrasíliaBrazil
  2. 2.Ecology DepartmentUniversity of Brasília (UnB)BrasíliaBrazil
  3. 3.Biological Chemistry and Crop Protection Department, Rothamsted ResearchHarpendenUK
  4. 4.International Centre of Insect Physiology and Ecology (icipe)Mbita PointKenya
  5. 5.Embrapa Recursos Genéticos e Biotecnologia—Parque Estação BiológicaBrasíliaBrazil

Personalised recommendations