Journal of Chemical Ecology

, Volume 38, Issue 11, pp 1358–1365 | Cite as

Synergy Versus Potency in the Defensive Secretions from Nymphs of two Pentatomomorphan Families (Hemiptera: Coreidae and Pentatomidae)

  • Dorit EliyahuEmail author
  • Roxanne A. Ceballos
  • Vahid Saeidi
  • Judith X. Becerra


One characteristic of true bugs (Heteroptera) is the presence of dorsal abdominal glands in the immature nymphal stages. These glands usually produce defensive chemicals (allomones) that vary among taxa but are still similar in closely related groups. Knowledge of the chemistry and prevalence of allomones in different taxa may clarify the evolution of these chemical defensive strategies. Within the infraorder Pentatomomorpha, the known secretions of nymphs of Pentatomidae tend to contain the hydrocarbon, n-tridecane, a keto-aldehyde, and an (E)-2-alkenal as the most abundant components. In the Coreidae, the dorsal abdominal gland secretions of nymphs often contain little or no hydrocarbon, and the most abundant keto-aldehyde and (E)-2-alkenal are often of shorter chain-length than those of pentatomids. We hypothesized that the long chain compounds would be less potent than their shorter homologs, and that bugs that carry the former would benefit from a synergistic effect of n-tridecane. To test this hypothesis we used three different behavioral assays with ants. A predator–prey assay tested the deterrence of allomones toward predators; a vapor experiment tested the effectiveness of allomones in the gaseous phase toward predators; and application of allomones onto predators tested the effect of direct contact. The results substantiate the hypothesis of a synergistic effect between n-tridecane and longer chain keto-aldehyde and (E)-2-alkenal in deterring predators. The short chain keto-aldehyde 4-oxo-(E)-2-hexenal was highly effective on its own. Thus, it seems that different groups of the infraorder diverged in their strategies involving defensive chemicals. Implications of this divergence are discussed.


Allomone Dorsal abdominal glands Nymphs Predators Keto-aldehydes n-tridecane 



Thanks to. J. Liebig for allowing us to conduct the predator assays with Harpegnathos saltator ants in his laboratory, and to K. Haight for facilitating these assays. We also thank C. Schwertner, G. Balme, B. Marazzi, P. Marek, and S. Olivier for helping with bug and ant collection and identification. Two anonymous reviewers, contributed to the improvement of this manuscript. The research was funded by the Center for Insect Science through NIH Training Grant #1 K12 GM000708 to DE and by a grant from the BIO5 institute, U. of A. to JXB.


  1. Aldrich, J. R. 1988. Chemical ecology of the heteroptera. Annu. Rev. Entomol. 33:211–238.CrossRefGoogle Scholar
  2. Aldrich, J. R. and Yonke, T. R. 1975. Natural products of abdominal and metathoracic scent glands of Coreoid bugs. Ann. Entomol. Soc. Am. 68:955–960.Google Scholar
  3. Aldrich, J. R., Kochansky, J. P., Lusby, W. R., and Sexston, J. D. 1984. Semiochemicals from a predaceous stink bug, Podisus maculiventrix (Hemiptera: Pentatomidae). J. Wash. Acad. Sci. 74:39–46.Google Scholar
  4. Aldrich, J. R., Neal, J. W., Oliver, J. E., and Lusby, W. R. 1991. Chemistry vis-a-vis maternalism in lace bugs (Heteroptera: Tingidae): Alarm pheromones and exudate defense in Corythucha and Gargaphia spp. J. Chem. Ecol. 17:2307–2322.CrossRefGoogle Scholar
  5. Aryeetey, E. and Kumar, R. 1973. Structure and function of dorsal abdominal gland and defence mechanism in cocoa capsids (Miridae: Heteroptera). J. Entomol. A – Physiol. Behav. 47:181–189.Google Scholar
  6. Baker, J. T. and Jones, P. A. 1969. Volatile constituents of scent gland reservoir of nymph of the coreoid Pternistria bispina Stal. Aust. J. Chem. 22:1793–1796.CrossRefGoogle Scholar
  7. Blatt, S. E., Borden, J. H., Pierce, H. D., Gries, R., and Gries, G. 1998. Alarm pheromone system of the western conifer seed bug, Leptoglossus occidentalis. J. Chem. Ecol. 24:1013–1031.CrossRefGoogle Scholar
  8. Blum, M. S. and Traynham, J. G. 1960. The chemistry of the pentatomid scent gland. Proc. Int’l Cong. Entomol. (Vienna) 3:48–52.Google Scholar
  9. Borges, M. and Aldrich, J. R. 1992. Instar-specific defensive secretions of stink bugs (Heteroptera: Pentatomidae). Experientia 48:893–896.CrossRefGoogle Scholar
  10. Calam, D. H. and Youdeowi, A. 1968. Identification and functions of secretion from the posterior scent gland of fifth instar larva of the bug Dysdercus intermedius. J. Insect Physiol. 14:1147–1158.CrossRefGoogle Scholar
  11. Cassier, P., Nagnan, P., Llosa, J. F., Andre, M., and Guillaumin, D. 1994. Fine structure and physiochemical analysis of the nymphal and imaginal scent gland systems of Lincus spurcus (Rolston) (Heterroptera: Pentatomidae). Int. J. Insect Morphol. Embryol. 23:371–382.CrossRefGoogle Scholar
  12. Davidova-Vilimova, J. and Podoubsky, M. 1999. Larval and adult dorso-abdominal scent glands, and androconia of central European Pentatomoidea. ACTA Soc. Zool. Bohem. 63:37–69.Google Scholar
  13. Dettner, K. and Reissenweber, F. 1991. The defensive secretion of Omaliinae and Proteininae (Coleoptera: Staphylinidae): Its chemistry, biological and taxonomic significance. Biochem. Sys. Ecol. 19:291–303.CrossRefGoogle Scholar
  14. Eisner, T. 1970. Chemical defense against predation in arthropods, pp. 157–217, in E. Sondheimer and J. B. Simeone (eds.), Chemical Ecology. Academic, New York.Google Scholar
  15. Fávaro, C. F., de Rodriguez, M. A. C., Aldrich, J. R., and Zarbin, P. H. G. 2011. Identification of semiochemicals in adults and nymphs of the stink bug Pallantia macunaima Grazia (Hemiptera: Pentatomidae). J. Braz. Chem. Soc. 22:58–64.CrossRefGoogle Scholar
  16. Fucarino, A., Millar, J. G., McElfresh, J. S., and Colazza, S. 2004. Chemical and physical signals mediating conspecific and heterospecific aggregation behavior of first instar stink bugs. J. Chem. Ecol. 30:1257–1269.PubMedCrossRefGoogle Scholar
  17. Gunawardena, N. E. and Herath, H. M. W. K. B. 1991. Significance of medium chain n-alkanes as accompanying compounds in hemipteran defensive secretions: An investigation based on the defensive secretion of Coridius janus. J. Chem. Ecol. 17:2449–2458.CrossRefGoogle Scholar
  18. Ho, H. Y., Kou, R., and Tseng, H. K. 2003. Semiochemicals from the predatory stink bug Eocanthecona furcellata (Wolff): Components of metathoracic gland, dorsal abdominal gland, and sternal gland secretions. J. Chem. Ecol. 29:2101–2114.PubMedCrossRefGoogle Scholar
  19. Ishiwatari, T. 1974. Studies of the scent of stink bugs. I. Alarm pheromone activity. Appl. Entomol. Zool. 9:153–158.Google Scholar
  20. Millar, J. G. 2005. Pheromones of true bugs. Top. Curr. Chem. 240:37–84.Google Scholar
  21. Moraes, M. C. B., Pareja, M., Laumann, R. A., and Borges, M. 2008. The chemical volatiles (semiochemicals) produced by neotropical stink bugs (Hemiptera: Pentatomidae). Neotrop. Entomol. 37:489–505.PubMedCrossRefGoogle Scholar
  22. Moreira, J. A. and Millar, J. G. 2005. Short and simple syntheses of 4-oxo-(E)-2-hexenal and homologs: Pheromone components and defensive compounds of Hemiptera. J. Chem. Ecol. 31:965–968.PubMedCrossRefGoogle Scholar
  23. Holliday, I. E.2010. One-Way-Between-Groups ANOVA (v1.0.2) in Free Statistics Software (v1.1.23-r7), Office for Research Development and Education, URL:
  24. Pareja, M., Borges, M., Laumann, R. L. A., and Moraes, M. C. B. 2007. Inter- and intraspecific variation in defensive compounds produced by five neotropical stink bug species (Hemiptera: Pentatomidae). J. Insect Physiol. 53:639–648.PubMedCrossRefGoogle Scholar
  25. Pavis, C. 1987. Les scérétion exocrines de hétéroptères (allomones et phéromones). Une mise au point bibliographique. Agronomie 7:547–561.Google Scholar
  26. Pavis, C., Malosse, C., Ducrot, P. H., and Descoins, C. 1994. Dorsal abdominal glands in nymphs of southern green stink bug, Nezara viridula (L) (Heteroptera, Pentatomidae) - chemistry of secretions of 5 instars and role of (E)-4-oxo-2-decenal, compound-specific to first instars. J. Chem. Ecol. 20:2213–2227.CrossRefGoogle Scholar
  27. Percy, J., Macdonald, J. A., and Weatherston, J. 1980. Ultrastructure of scent glands in larvae of Apateticus bracteatus (Hemiptera: Pentatomidae) and chemical composition of the secretion. Can. J. Zool. 58:2105–2115.CrossRefGoogle Scholar
  28. Prestwich, G. D. 1976. Composition of scents of 8 East-African hemipterans: Nymph-adult chemical polymorphism in coreids. Ann. Entomol. Soc. Am. 69:812–814.Google Scholar
  29. Prudic, K. L., Noje, K., and Becerra, J. X. 2008. Adults and nymphs do not smell the same: the different defensive compounds of the giant mesquite bug (Thasus neocalifornicus: Coreidae). J. Chem. Ecol. 34:734–741.PubMedCrossRefGoogle Scholar
  30. Remold, H. 1962. Über die biologische Bedeutung der Duftdrüsen bei den Landwanzen (Geocorisae). Z. Vergl. Physiol. 45:636–694.CrossRefGoogle Scholar
  31. Remold, H. 1963. Scent glands of land-bugs, their physiology and biological function. Nature 198:764–768.CrossRefGoogle Scholar
  32. Schuh, R. T. and Slater, J. A. 1995. True Bugs of the World (Hemiptera: Heteroptera)—Classification and Natural History. Cornell University, Ithaca, NY.Google Scholar
  33. Schwertner, C. F. and Grazia J. 2007. The genus Chinavia Orian (Hemiptera: Pentatomidae) in Brazil, with a pictorial key to adults. Rev. Braz. Entomol. 51:416-435.Google Scholar
  34. Staddon, B. W. 1979. The scent glands of heteroptera. Adv. Insect Physiol. 14:351–418.CrossRefGoogle Scholar
  35. Weirauch, C. 2006. Dorsal abdominal glands in adult Reduviidae (Heteroptera, Cimicomorpha). Deut. Entomol. Z. 53:91–102.CrossRefGoogle Scholar
  36. Xue, H.-J. and Bu, W.-J. 2008. Morphology of abdominal evaporatoria in larvae of some Lygaeoidea (Insecta: Hemiptera: Heteroptera): Function and bearing on classification. J. Nat. Hist. 42:35–58.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Dorit Eliyahu
    • 1
    Email author
  • Roxanne A. Ceballos
    • 1
  • Vahid Saeidi
    • 1
  • Judith X. Becerra
    • 2
  1. 1.Center for Insect ScienceUniversity of ArizonaTucsonUSA
  2. 2.Department of Biosphere 2University of ArizonaTucsonUSA

Personalised recommendations