Journal of Chemical Ecology

, Volume 38, Issue 11, pp 1410–1418 | Cite as

Phenolic Compounds of the Inner Bark of Betula pendula: Seasonal and Genetic Variation and Induction by Wounding

  • Jaana Liimatainen
  • Maarit Karonen
  • Jari Sinkkonen
  • Marjo Helander
  • Juha-Pekka Salminen


The contents of individual phenolic compounds in the inner bark of silver birch (Betula pendula Roth) were analyzed by HPLC-DAD. Samples from 21 mature trees originating from three micropropagated parent trees were collected six times over a 1-year period. Significant seasonal variation in the quantities of ten compounds and four chromatographically unresolved compound pairs was found. A majority of the compounds also exhibited significant quantitative variation among birch clones. There were no qualitative differences associated with the season or among the clones. However, wounding of the bark induced the production of new types of bark phenolics: several ellagitannins were detected in the callus tissues of birch for the first time.


Betula pendula HPLC-DAD Inner bark Phenolics Quantification Seasonal variation 



This work was kindly supported by grants from the Emil Aaltonen Foundation, the Alfred Kordelin Foundation, the Finnish Cultural Foundation, the Niemi Foundation, and the Palomaa-Erikoski Scholarship Fund. Johanna Moilanen, Anu Tuominen, Matti Vihakas, and the anonymous reviewers are acknowledged for helpful comments on the manuscript.


  1. Atkinson, M. D. 1992. Betula pendula Roth (B. verrucosa Ehrh) and B. pubescens Ehrh. J. Ecol. 80:837–870.CrossRefGoogle Scholar
  2. Barbehenn, R. V., Jones, C. P., Karonen, M., and Salminen, J.-P. 2006a. Tannin composition affects the oxidative activities of tree leaves. J. Chem. Ecol. 32:2235–2251.PubMedCrossRefGoogle Scholar
  3. Barbehenn, R. V., Jones, C. P., Hagerman, A. E., Karonen, M., and Salminen, J.-P. 2006b. Ellagitannins have greater oxidative activities than condensed tannins and galloyl glucoses at high pH: potential impact on caterpillars. J. Chem. Ecol. 32:2253–2267.PubMedCrossRefGoogle Scholar
  4. Brasier, C. M. 1990. China and the origins of Dutch elm disease: an appraisal. Plant Pathol. 39:5–16.CrossRefGoogle Scholar
  5. Coleman, J. S. and Jones, C. G. 1991. A phytocentric perspective of phytochemical induction by herbivores, pp. 3–45, in D. W. Tallamy and M. J. Raupp (eds.), Phytochemical Induction by Herbivores. Wiley, New York.Google Scholar
  6. Evensen, P. C., Solheim, H., Høiland, K., and Stenersen, J. 2000. Induced resistance of Norway spruce, variation of phenolic compounds and their effects on fungal pathogens. Forest Pathol. 30:97–108.CrossRefGoogle Scholar
  7. Eyles, A., Davies, N. W., Yuan, Z. Q., and Mohammed, C. 2003. Host responses to natural infection by Cytonaema sp. in the aerial bark of Eucalyptus globulus. Forest Pathol. 33:317–331.CrossRefGoogle Scholar
  8. Eyles, A., Bonello, P., Ganley, R., and Mohammed, C. 2010. Induced resistance to pests and pathogens in trees. New Phytol. 185:893–908.PubMedCrossRefGoogle Scholar
  9. Haslam, E. 2007. Vegetable tannins, pp. 984–987, in K. Roberts (ed.), Handbook of Plant Science. Wiley, Chichester.Google Scholar
  10. Julkunen-Tiitto, R., Rousi, M., Bryant, J., Sorsa, S., Keinänen, M., and Sikanen, H. 1996. Chemical diversity of several Betulaceae species: comparison of phenolics and terpenoids in northern birch stems. Trees 11:16–22.CrossRefGoogle Scholar
  11. Karonen, M., Parker, J., Agrawal, A., and Salminen, J.-P. 2010. First evidence of hexameric and heptameric ellagitannins in plants detected by liquid chromatography/electrospray ionisation mass spectrometry. Rapid Commun. Mass Spectrom. 24:3151–3156.PubMedCrossRefGoogle Scholar
  12. Karonen, M., Liimatainen, J., and Sinkkonen, J. 2011. Birch inner bark procyanidins can be resolved with enhanced sensitivity by hydrophilic interaction HPLC-MS. J. Sep. Sci. 34:3158–3165.PubMedCrossRefGoogle Scholar
  13. Laitinen, M.-L., Julkunen-Tiitto, R., and Rousi, M. 2002. Foliar phenolic composition of European white birch during bud unfolding and leaf development. Physiol. Plant. 114:450–460.PubMedCrossRefGoogle Scholar
  14. Laitinen, M.-L., Julkunen-Tiitto, R., Yamaji, K., Heinonen, J., and Rousi, M. 2004. Variation in birch bark secondary chemistry between and within clones: implications for herbivory by hares. Oikos 104:316–326.CrossRefGoogle Scholar
  15. Laitinen, M.-L., Julkunen-Tiitto, R., Tahvanainen, J., Heinonen, J., and Rousi, M. 2005a. Variation in birch (Betula pendula) shoot secondary chemistry due to genotype, environment, and ontogeny. J. Chem. Ecol. 31:697–717.PubMedCrossRefGoogle Scholar
  16. Laitinen, J., Julkunen-Tiitto, R., Rousi, M., Heinonen, J., and Tahvanainen, J. 2005b. Ontogeny and environment as determinants of the secondary chemistry of three species of white birch. J. Chem. Ecol. 31:2243–2262.PubMedCrossRefGoogle Scholar
  17. Lieutier, F., Brignolas, F., Sauvard, D., Yart, A., Galet, C., Brunet, M., and van de Sype, H. 2003. Intra- and inter-provenance variability in phloem phenols of Picea abies and relationship to a bark beetle-associated fungus. Tree Physiol. 23:247–256.Google Scholar
  18. Liimatainen, J., Sinkkonen, J., Karonen, M., and Pihlaja, K. 2008. Two new phenylbutanoids from inner bark of Betula pendula. Magn. Reson. Chem. 46:195–198.PubMedCrossRefGoogle Scholar
  19. Liimatainen, J., Karonen, M., Sinkkonen, J., Helander, M., and Salminen, J.-P. 2012a. Characterization of phenolic compounds from inner bark of Betula pendula. Holzforschung 66:171–181.CrossRefGoogle Scholar
  20. Liimatainen, J., Karonen, M., and Sinkkonen, J. 2012b. Procyanidin xylosides from the bark of Betula pendula. Phytochemistry 76:178–183.PubMedCrossRefGoogle Scholar
  21. Linnakoski, R., de Beer, Z. W., Rousi, M., Niemelä, P., Pappinen, A., and Wingfield, M. J. 2008. Fungi, including Ophiostoma karelicum sp. nov., associated with Scolytus ratzeburgi infesting birch in Finland and Russia. Mycol. Res. 112:1475–1488.PubMedCrossRefGoogle Scholar
  22. Linnakoski, R., de Beer, Z. W., Rousi, M., Solheim, H., and Wingfield, M. J. 2009. Ophiostoma denticiliatum sp. nov. and other Ophiostoma species associated with the birch bark beetle in southern Norway. Persoonia 23:9–15.PubMedCrossRefGoogle Scholar
  23. Lundgren, L. N., Pan, H., Theander, O., Eriksson, H., Johansson, U., and Svenningsson, M. 1995. Development of a new chemical method for distinguishing between Betula pendula and Betula pubescens in Sweden. Can. J. For. Res. 25:1097–1102.CrossRefGoogle Scholar
  24. Mithöfer, A., Wanner, G., and Boland, W. 2005. Effects of feeding Spodoptera littoralis on lima bean leaves. II. Continuous mechanical wounding resembling insect feeding is sufficient to elicit herbivory-related volatile emission. Plant Physiol. 137:1160–1168.PubMedCrossRefGoogle Scholar
  25. Moilanen, J. and Salminen, J.-P. 2008. Ecologically neglected tannins and their biologically relevant activity: chemical structures of plant ellagitannins reveal their in vitro oxidative activity at high pH. Chemoecology 18:73–83.Google Scholar
  26. Muilenburg, V. L., Phelan, P. L., Bonello, P., and Herms, D. A. 2011. Inter- and intra-specific variation in stem phloem phenolics of paper birch (Betula papyrifera) and European white birch (Betula pendula). J. Chem. Ecol. 37:1193–1202.PubMedCrossRefGoogle Scholar
  27. Nielsen, D. G., Muilenburg, V. L., and Herms, D. A. 2011. Interspecific variation in resistance of Asian, European, and North American birches (Betula spp.) to bronze birch borer (Coleoptera: Buprestidae). Environ. Entomol. 40:648–653.PubMedCrossRefGoogle Scholar
  28. Ockels, F. S., Eyles, A., McPherson, B. A., Wood, D. L., and Bonello, P. 2007. Phenolic chemistry of coast live oak response to Phytophthora ramorum infection. J. Chem. Ecol. 33:1721–1732.PubMedCrossRefGoogle Scholar
  29. Ossipov, V., Salminen, J.-P., Ossipova, S., Haukioja, E., and Pihlaja, K. 2003. Gallic acid and hydrolysable tannins are formed in birch leaves from an intermediate compound of the shikimate pathway. Biochem. System. Ecol. 31:3–16.CrossRefGoogle Scholar
  30. Ostrofsky, W. D., Shortle, W., and Blanchard, R. O. 1984. Bark phenolics of American beech (Fagus grandifolia) in relation to the beech bark disease. Eur. J. For. Path. 14:52–59.CrossRefGoogle Scholar
  31. Poteri, M., Helander, M., Saikkonen, K., and Elamo, P. 2001. Effect of Betula pendula clone and leaf age on Melampsoridium betulinum rust infection in a field trial. Forest Pathol. 31:177–185.CrossRefGoogle Scholar
  32. Raulo, J. 1981. Koivukirja. Gummerus, Jyväskylä.Google Scholar
  33. Rousi, M., Tahvanainen, J., Henttonen, H., Herms, D. A., and Uotila, I. 1997. Clonal variation in susceptibility of white birches (Betula spp.) to mammalian and insect herbivores. For. Sci. 43:396–402.Google Scholar
  34. Saalas, U. 1949. Suomen Metsähyönteiset. WSOY, Helsinki.Google Scholar
  35. Salminen, J.-P. 2002. Birch leaf hydrolysable tannins: chemical, biochemical and ecological aspects. Ph.D. dissertation. University of Turku.Google Scholar
  36. Salminen, J.-P. and Karonen, M. 2011. Chemical ecology of tannins and other phenolics: we need a change in approach. Funct. Ecol. 25:325–338.CrossRefGoogle Scholar
  37. Salminen, J.-P., Ossipov, V., Loponen, J., Haukioja, E., and Pihlaja, K. 1999. Characterisation of hydrolysable tannins from leaves of Betula pubescens by high-performance liquid chromatography – mass spectrometry. J. Chromatogr. A 864:283–291.CrossRefGoogle Scholar
  38. Salminen, J.-P., Ossipov, V., Haukioja, E., and Pihlaja, K. 2001. Seasonal variation in the content of hydrolysable tannins in leaves of Betula pubescens. Phytochemistry 57:15–22.PubMedCrossRefGoogle Scholar
  39. Salminen, J.-P., Ossipov, V., and Pihlaja, K. 2002. Distribution of hydrolysable tannins in the foliage of Finnish birch species. Z. Naturforsch. 57c:248–256.Google Scholar
  40. Salminen, J.-P., Roslin, T., Karonen, M., Sinkkonen, J., Pihlaja, K., and Pulkkinen, P. 2004. Seasonal variation in the content of hydrolyzable tannins, flavonoid glycosides, and proanthocyanidins in oak leaves. J. Chem. Ecol. 30:1693–1711.PubMedCrossRefGoogle Scholar
  41. Šmite, E., Lundgren, L. N., and Andersson, R. 1993. Arylbutanoid and diarylheptanoid glycosides from inner bark of Betula pendula. Phytochemistry 32:365–369.CrossRefGoogle Scholar
  42. Šmite, E., Pan, H., and Lundgren, L. N. 1995. Lignan glycosides from inner bark of Betula pendula. Phytochemistry 40:341–343.CrossRefGoogle Scholar
  43. Sunnerheim-Sjöberg, K. and Knutsson, P.-G. 1995. Platyphylloside: metabolism and digestibility reduction in vitro. J. Chem. Ecol. 21:1339–1348.CrossRefGoogle Scholar
  44. Valkama, E., Salminen, J.-P., Koricheva, J., and Pihlaja, K. 2004. Changes in leaf trichomes and epicuticular flavonoids during leaf development in three birch taxa. Ann. Bot. 94:233–242.PubMedCrossRefGoogle Scholar
  45. Waterman, P. G. and Mole, S. 1994. pp. 44–65, Analysis of Phenolic Plant Metabolites. Blackwell Scientific Publications, Oxford.Google Scholar
  46. Ylioja, T., Schulman, E., Rousi, M., and Velling, P. 1995. Susceptibility of white birch (Betula spp.) hybrids to Phytobia fly. Icel. Agric. Sci. 9:125–133.Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Jaana Liimatainen
    • 1
  • Maarit Karonen
    • 1
  • Jari Sinkkonen
    • 1
  • Marjo Helander
    • 2
  • Juha-Pekka Salminen
    • 1
  1. 1.Laboratory of Organic Chemistry and Chemical Biology, Department of ChemistryUniversity of TurkuTurkuFinland
  2. 2.Section of Ecology, Department of BiologyUniversity of TurkuTurkuFinland

Personalised recommendations