Advertisement

Journal of Chemical Ecology

, Volume 38, Issue 8, pp 966–974 | Cite as

Induction of Chlamydospore Formation in Fusarium by Cyclic Lipopeptide Antibiotics from Bacillus subtilis C2

  • Lei Li
  • MingChuan Ma
  • Rong Huang
  • Qing Qu
  • GuoHong Li
  • JinWei Zhou
  • KeQin Zhang
  • KaiPing Lu
  • XueMei Niu
  • Jun Luo
Article

Abstract

The culture filtrate of Bacillus subtilis strain C2 showed strong activity against the pathogenic fungus Fusarium solani f. sp. radicicola. A partially purified fraction (PPF) from the extract induced chlamydospore formation in Fusarium. Reverse-phase high performance liquid chromatography yielded 8 different fractions, six of which had chlamydospore-inducing activity. Mass spectrometry and nuclear magnetic resonance analyses identified the main active constituent as C17 fengycin A (FA17), a cyclic lipopeptide. The effect of FA17 on morphology and physiology of two Fusarium species was dependent on the lipopeptide concentration. When challenged with FA17 at concentrations (0.5, 8, 64 μg ml−1) below the minimum inhibitory concentration (MIC) (128 μg ml−1), two species of Fusarium formed chlamydospores from hyphae, germ tubes, or inside the conidia within 2 days. At concentrations close to the MIC, FA17 caused Fusarium to form sparse and swollen hyphae or lysed conidia. The other five fractions were identified as fengycin A homologues. The homologues could also induce chlamydospore-like structures in 17 species of filamentous fungi including some specimens that do not normally produce chlamydospores, according to their taxonomic descriptions. Like other chlamydospores, these structures contained nuclei and lipid bodies as revealed by DAPI and Nile Red staining, and could germinate. This is the first study to demonstrate that under laboratory conditions fengycin, an antifungal lipopeptide produced by B. subtilis, can induce chlamydospore formation in Fusarium and chlamydospore-like structures in many filamentous fungi.

Keywords

Bacteria-fungal interaction Rizosphere bacteria Fusarium Fengycin Chlamydospore Bacillus subtilis 

Notes

Acknowledgments

This work was performed with financial support from the Natural Science Foundation of China under the Grant no. 21162036, 20762014, 30960007, 50761007, 51161025, the Natural Science Foundation of Yunnan province under the Grant no. 2006E0008Q and Major state Basic Research Development Program (2009CB125905). We are grateful to Dr. J-P Xu (McMaster University, Canada) for his critical reading of this manuscript.

Supplementary material

10886_2012_171_MOESM1_ESM.doc (42 kb)
Table S1 1H-NMR resonance assignments of fengycin A in DMSO solution at 295 K (DOC 41 kb)

References

  1. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. 1997. Gapped BLAST and PSI-BLST, a new generation of protein database search programs. Nucl. Acids Res. 25:3389–3402.PubMedCrossRefGoogle Scholar
  2. Asaka, O. and Shoda, M. 1996. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. App. Environ. Microbiol. 62:4081–4085.Google Scholar
  3. Bie, X. M., Lu, Z. X., and Lu, F. X. 2009. Identification of fengycin homologues from Bacillus subtilis with ESI-MS/CID. J. Microbiol. Meth. 79:272–278.CrossRefGoogle Scholar
  4. de Boer, W., Folman, L. B., Summerbell, R. C., and Boddy, L. 2005. Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol. Rev. 29:795–811.PubMedCrossRefGoogle Scholar
  5. Chan, Y. K., McCormick, W. A., and Seifert, K. A. 2003. Characterization of an antifungal soil bacterium and its antagonistic activities against Fusarium species. Can. J. Microbiol. 49:253–262.PubMedCrossRefGoogle Scholar
  6. Cobas, C., Cruces, J., and Sardina, F. J. 2000. MestRe-C version 2.3, Universidad de Santiago de Compostela, Spain.Google Scholar
  7. Couteaudier, Y. and Alabouvette, C. 1990. Survival and inoculum potential of conidia and chlamydospores of Fusarium oxysporum f. sp. lini in soil. Can. J. Microbiol. 36:551–556.PubMedCrossRefGoogle Scholar
  8. Goh, Y. K., Daida, P., and Vujanovic, V. 2009. Effects of abiotic factors and biocontrol agents on chlamydospore formation in Fusarium graminearum and Fusarium sporotrichioides. Biocontrol Sci. Techn. 19:151–167.CrossRefGoogle Scholar
  9. Harish, S., Manjula, K., and Podile, A. R. 1998. Fusarium udum is resistant to the mycolytic activity of biocontrol strain of Bacillus Subtilis AF 1. FEMS Microbiol. Ecol. 25:385–390.CrossRefGoogle Scholar
  10. Jensen, C. D. E., Percich, J. A., and Graham, P. H. 2002. Integrated management strategies of bean root rot with Bacillus subtilis and Rhizobium in Minnesota. Field Crop Res 74:107–115.CrossRefGoogle Scholar
  11. Kinsella, K., Schilthess, C. P., Morris, T. F., and Stuart, J. D. 2009. Rapid quantification of Bacillus subtilis antibiotics in the rhizosphere. Soil Biol. Biochem. 41:374–379.CrossRefGoogle Scholar
  12. Kloepper, J. W., Lifshitz, R., and Zablotowicz, M. 1989. Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol. 7:39–44.CrossRefGoogle Scholar
  13. Krieg, N. R. and Holt, J. G. 1984. pp. 1104–1139, Bergey’s manual of systematic bacteriology, Vol. 1. Williams and Wilkins, Baltimore, Md.Google Scholar
  14. Lane, D. J. 1991. 16S/23S rRNA sequencing, pp. 115–175, in E. Stackebrandt and M. Goodfellow (eds.), Nucleic Acid Techniques in Bacterial Systematics. Wiley, New York.Google Scholar
  15. Leslie, J. F. and Summerell, B. A. 2006. The Fusarium Laboratory Mannual. Blackwell Publishing, USA.CrossRefGoogle Scholar
  16. Li, L., Qu, Q., Tian, B. Y., and Zhang, K. Q. 2005. Induction of chlamydospores in Trichoderma harzianum and Glioladium roseum by antifungal compounds produced by Bacillus subtilis C2. J. Phytopathol. 153:868–693.CrossRefGoogle Scholar
  17. Lin, X. R. and Heitman, J. 2005. Chlamydospore formation during hyphal growth in Cryptococcus neoformans. Eukaryot. Cell 4:1746–1754.PubMedCrossRefGoogle Scholar
  18. Luo, W. F., Yu, S. F., He, C. F., Li, Z. Y., Wang, C. L., and Cui, X. M. 1997. On the combined infection of root rot pathogens on Panax Notoginseng. Acta Phytopathol. Sinica 27:85–91.Google Scholar
  19. Nash, S. M., Christou, T., and Snyder, W. C. 1961. Existence of Fusarium solani f. phaseoli as chlamydospores in soil. Phytopathology 51:308–312.Google Scholar
  20. Nelson, P. E., Dignani, M. C., and Anaissie, E. J. 1994. Taxonomy, biology, and clinical aspects of Fusarium species. Clin. Microbiol. Rev. 7:479–504.PubMedGoogle Scholar
  21. Nielsen, T. H., Thrane, C., Christophersen, C., Anthoni, U., and Sørensen, J. 2000. Structure, production characteristics and fungal antagonism of tensin—a new antifungal cyclic lipopeptide from Pseudomonas fluorescens strain 96.578. J. App. Microbiol. 89:992–1001.CrossRefGoogle Scholar
  22. Ongena, M. and Jacques, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16:115–125.PubMedCrossRefGoogle Scholar
  23. Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., Arpigny, J. L., and Thonart, P. 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 9:1084–1090.PubMedCrossRefGoogle Scholar
  24. Raaijmakers, J. M., Brujin, I. D., Nybroe, O., and Ongena, M. 2010. Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol. Rev. 34:1037–1062.PubMedGoogle Scholar
  25. Radford, S. A., Johnson, E. M., and Warnock, D. W. 1997. In vitro studies of activity of voriconazole (UK-109,496), a new triazole antifungal agent, against emerging and less-common mold pathogens. Antimicrob. Agents Chemother. 41:841–843.PubMedGoogle Scholar
  26. Romero, D., de Vicente, A., Rakotoaly, R. H., Dufour, S., Veening, J. W., Arrebola, E., Cazorla, F. M., Kuipers, O. P., Paquot, M., and Pérez-García, A. 2007. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol. Plant Microbe. 20:430–440.CrossRefGoogle Scholar
  27. Stevenson, I. L. and Becker, S. A. W. E. 1972. The fine structure and development of chlamydospores of Fusarium oxysporum. Can. J. Microbiol. 18:997–1002.PubMedCrossRefGoogle Scholar
  28. Umezawa, H., Aoyagi, T., Nishikiori, T., Okuyama, A., Yamagishi, Y., Hamada, M., and Takeuchi, T. 1986. Plipastatins: New inhibitors of phospholipase A2, produced by Bacillus cereus BMG302-fF67. J. Antibiot. 39:737–744.PubMedCrossRefGoogle Scholar
  29. Vanittanakom, N. P. and Loeffler, W. 1986. Fengycin – A novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J. Antibiot. 39:888–901.PubMedCrossRefGoogle Scholar
  30. Volpon, L., Besson, F., and Lancelin, J. M. 2000. NMR structure of antibiosis plipastatins A and B from Bacillus subtilis inhibitors of phospholipase A2. FEBS Lett. 485:76–80.PubMedCrossRefGoogle Scholar
  31. Wüthrich, K. 1986. NMR of Proteins and Nucleic Acids. Wiley Interscience, New York.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Lei Li
    • 1
  • MingChuan Ma
    • 1
  • Rong Huang
    • 2
  • Qing Qu
    • 2
  • GuoHong Li
    • 1
  • JinWei Zhou
    • 1
  • KeQin Zhang
    • 1
  • KaiPing Lu
    • 1
  • XueMei Niu
    • 1
  • Jun Luo
    • 1
  1. 1.Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of EducationYunnan UniversityKunmingPeople’s Republic of China
  2. 2.School of Chemical Science and TechnologyYunnan UniversityKunmingChina

Personalised recommendations