Journal of Chemical Ecology

, Volume 38, Issue 7, pp 846–853 | Cite as

Efficient Sex Pheromone Trapping: Catching The Sweetpotato Weevil, Cylas formicarius

  • G. V. P. Reddy
  • Nirupa Gadi
  • Anthony J. Taianao


The sweetpotato weevil, Cylas formicarius (Fabricius) (Coleoptera: Brentidae), is the most serious pest of sweetpotato around the world, damaging sweetpotatoes in the field and in storage, as well as being a quarantine pest. Because the larval period is spent within vines or tubers, and the adults are nocturnal, chemical control frequently is not effective. In addition, there are few natural enemies, and pheromone-based trapping does not appear to reduce the damage level. In the present study, we evaluated a number of parameters that affect pheromone-based trap catch, including trap design, trap size, trap color, and height at which the traps are placed. Pherocon unitraps caught higher numbers than ground, funnel water, or delta traps. Medium-sized traps (13 × 17.5 cm) were more effective than larger or smaller traps. In a color-choice test, C. formicarius preferred red over gray, brown, blue, white, yellow, black, or red traps; light red was more attractive than other shades of red. Maximum catches were obtained when the traps were set 50 cm above the crop canopy. Light-red unitraps with pheromone lures caught more adults than identical traps without lures, suggesting that C. formicarius is influenced by both visual and olfactory cues. Pheromone-baited light-red unitraps, 13 × 17.5 cm, installed 50 cm above the crop canopy, were the most effective at catching C. formicarius adults, and they appear to have the greatest potential for use in trap-and-kill strategies and eradication programs.


Sex pheromone Cylas formicarius Traps characteristics Trap design Size Color Height Coleoptera Curculionidae Brentidae 


  1. Abdallah, F. F. and Al-Khatri, S. A. 2005. The effect of pheromone, kairomone and food bait on attracting adults of red palm weevil Rhynchophorus ferrugineus in the Sultanate of Oman in date palm plantations. Egyptian J Agric Res. 83:69–177.Google Scholar
  2. Austin, D. F., Jansson, R. K., and Wolfe, G. W. 1991. Convolvulaceae and Cylas: a proposed hypothesis on the origins of this plant/insect relationship. Trop Agric. 68:162–170.Google Scholar
  3. Björklund, N., Nordlander, G., and Bylund, H. 2005. Olfactory and visual stimuli used in orientation to conifer seedlings by the pine weevil, Hylobius abietis. Physiol Entomol. 30:225–231.CrossRefGoogle Scholar
  4. Braun, A. R. and Van de Fliert, E. 1999. Evaluation of the impact of sweetpotato weevil (Cylas formicarius) and the effectiveness of Cylas sex pheromone traps at the farm level in Indonesia. Int J Pest Manage. 45:101–110.CrossRefGoogle Scholar
  5. Chalfant, R. B., Jansson, R. K., Seal, D. R., and Schalk, J. M. 1990. Ecology and management of sweet potato insects. Annu Rev Entomol. 35:157–180.CrossRefGoogle Scholar
  6. Coffelt, J. A., Vick, K. W., Sower, L. L., and McClellan, W. T. 1978. Sex pheromone of the sweetpotato weevil, Cylas formicarius elagantulus: Laboratory bioassay and evidence for a multiple component system. Environ Entomol. 7:756–758.Google Scholar
  7. Downham, M. C. A., Smit, N. E. J. M., Laboke, P. O., Hall, D. R., and Odongo, B. 2001. Reduction of pre-harvest infestations of African sweetpotato weevils Cylas brunneus and C. puncticollis (Coleoptera: Apionidae) using a pheromone mating-disruption technique. Crop Prot 20:163–166.CrossRefGoogle Scholar
  8. Dyck, V. A., Hendrichs, J., and Robinson, A. S. (eds.) 2005. pp. 787, Sterile insect technique. Principles and practice in area-wide integrated pest management. Springer, Dordrecht, Netherlands.Google Scholar
  9. Faleiro, J. R. 2006. Insight into the management of red palm weevil Rhyncophorus ferrugineus Olivier: based on experiences on coconut in India and date palm in Saudi Arabia, pp. 35–57, in F. Agroalimed (ed.), I Jornada Internacional sobre el Picudo Rojo de las Palmeras (November, 2005). Fundación Agroalimed, Valencia, Spain.Google Scholar
  10. Heath, R. R., Coffelt, J. A., Sonnet, P. E., Proshold, F. I., Dueben, B., and Tumlinson, J. H. 1986. Identification of sex-pheromone produced by female sweetpotato weevil, Cylas formicarius elegantulus (Summers). J Chem Ecol. 12:1489–1503.CrossRefGoogle Scholar
  11. Hoover, S. E. R., Lindgren, B. S., Keeling, C. I., and Slessor, K. N. 2000. Enantiomer preference of Trypodendron lineatum and effect of pheromone dose and trap length on response to lineatin-baited traps in interior British Columbia. J Chem Ecol. 26:667–677.CrossRefGoogle Scholar
  12. Jackson, D. M. and Bohac, J. R. 2006. Evaluation of pheromone traps for monitoring sweetpotato weevils. J Agric Urban Entomol. 23:141–158.Google Scholar
  13. Jansson, R. K., Bryan, H. H., and Sorensen, K. A. 1987. Within-vine distribution and damage of sweet potato weevil, Cylas formicarius elegantulus (Coleoptera: Curculionidae), on four cultivars of sweet potato in southern Florida. Florida Entomol. 70:523–526.CrossRefGoogle Scholar
  14. Jansson, R. K., Mason, L. J., Heath, R. R., Sorensen, K. A., Hammond, A. M., and Robinson, J. V. 1992. Pheromone-trap monitoring system for sweetpotato weevil (Coleoptera: Apionidae) in the southern United States: effects of trap type and pheromone dose. J Econ Entomol. 85:416–423.Google Scholar
  15. Jansson, R. K., Mason, L. J., Heath, R. R., Lecrone, S. H., and Forey, D. E. 1993. Pheromone-trap monitoring system for sweetpotato weevil (Coleoptera: Apionidae) in the southern United States: effects of lure type, age and duration in storage. J Econ Entomol. 86:1109–1115.Google Scholar
  16. Koyama, J., Kakinohana, H., and Miyatake, T. 2004. Eradication of the melon fly, Bactrocera cucurbitae, in Japan: importance of behavior, ecology, genetics, and evolution. Annu Rev Entomol. 49:331–349.PubMedCrossRefGoogle Scholar
  17. Kuba, H., Teruya, T., and Sakakibara, M. 2000. Eradication of weevils by sterile-insect-release methods (9): experimental eradication project of sweet potato weevils in Kume Island [in Japanese]. Plant Prot. 54:483–486.Google Scholar
  18. Miller, D. N. and Crowe, C. M. 2009. Length of multiple-funnel traps affects catches of some bark and wood boring beetles in a slash pine stand in northern Florida. Florida Entomol. 92:506–507.CrossRefGoogle Scholar
  19. Moriya, S. 1997. Is it possible to eradicate the two weevil pests of sweet potato, Cylas formicarius and Euscepes postfasciatus from Japan? Bull Okinawa Agric Exp Stn. 18:19–27.Google Scholar
  20. Alcázar, J., Cisneros, F., and Morales, A. 1997. Large-scale implementation of IPM for sweetpotato weevil in Cuba: a collaborative effort, pp. 185–190, in Program Report 1995–1996, International Potato Center, Lima, Peru.Google Scholar
  21. Hwang, J. S. 2000. Integrated control of sweetpotato weevil, Cylas formicarius Fabricius, with sex pheromone and insecticide, pp 25–43, in C. Chien (ed.). Sweet Potato Production. Tsukuba, Ibaraki, Japan.Google Scholar
  22. Hwang, J. S. 2001. Integrated control of sweetpotato weevil, Cylas formicarius Fabricius, with sex pheromone and insecticide. Extension Bulletin—Food & Fertilizer Technology Center, Taipei: Food and Fertilizer Technology Center for the Asian and Pacific Region.Google Scholar
  23. Pillai, K. S., Rajamma, P., and Palaniswami, M. S. 1993. New technique in the control of sweet potato weevil using synthetic sex pheromone in India. Int J Pest Manage. 39:84–89.CrossRefGoogle Scholar
  24. Proshold, F. I., Gonzalez, J. L., Asencio, C., and Heath, R. R. 1986. A trap for monitoring the sweetpotato weevil (Coleoptera: Curculionidae) using pheromone or live females as bait. J Econ Entomol. 79:641–647.Google Scholar
  25. Reddy, G. V. P. 2012. Recent trends in the olfactory responses of insect natural enemies to plant volatiles, pp. 281–301, in G. Witzany and F. Baluska (eds.), Biocommunication of Plants. Springer, Heidelberg, Germany.CrossRefGoogle Scholar
  26. Reddy, G. V. P. and Guerrero, A. 2004. Interactions of insect pheromones and plant semiochemicals. Trends Plant Sci. 9:253–261.PubMedCrossRefGoogle Scholar
  27. Reddy, G. V. P. and Guerrero, A. 2010. New pheromones and insect control strategies. Vitam Horm. 83:493–519.PubMedCrossRefGoogle Scholar
  28. Reddy, G. V. P. and Raman, A. 2011. Visual cues are relevant in behavioral control measures for Cosmopolites sordidus (Coleoptera: Curculionidae). J Econ Entomol. 104:436–442.PubMedCrossRefGoogle Scholar
  29. Reddy, G. V. P., Fettköther, R., Noldt, U., and Dettner, K. 2005. Capture of female Hylotrupes bajulus as influenced by trap type and pheromone blend. J Chem Ecol. 31:2169–2177.PubMedCrossRefGoogle Scholar
  30. Reddy, G. V. P., Balakrishnan, S., Remolona, J. E., Kikuchi, R., and Bamba, J. P. 2011. Influence of trap type, size, color, and trapping location on the capture of the New Guinea sugarcane weevil, Rhabdoscelus obscurus (Coleoptera: Curculionidae). Ann Entomol Soc Am 104:594–603.CrossRefGoogle Scholar
  31. Reeves, J. L. 2011. Vision should not be overlooked as an important sensory modality for finding host plants. Environ Entomol. 40:855–863.PubMedCrossRefGoogle Scholar
  32. SAS Institute, Inc 2009. SAS/STAT user’s guide, release 9.3. SAS Institute, Cary, NC.Google Scholar
  33. Smit, N. E. J. M., Downham, M. C. A., Odongo, B., Hall, D. R., and Laboke, P. O. 1997. Development of pheromone traps for control and monitoring of sweetpotato weevils, Cylas puncticollis and C. brunneus, in Uganda. Entomol Exp Appl. 85:95–104.CrossRefGoogle Scholar
  34. Strong, L. A. 1983. Report of the Chief of the Bureau of Entomology and Plant Quarantine. United States Department of Agriculture, Washington.Google Scholar
  35. Sureda, T., Quero, C., Bosch, M. P., Aviles, R., Coll, F., Renou, M., and Guerrero, A. 2006. Electrophysiological and behavioral responses of a Cuban population of the sweet potato weevil to its sex pheromone. J Chem Ecol. 32:2177–2190.PubMedCrossRefGoogle Scholar
  36. Sutherland, J. A. 1986. A review of the biology and control of the sweetpotato weevil Cylas formicarius (Fab). Trop Pest Manage. 32:304–315.CrossRefGoogle Scholar
  37. Talekar, N. S. 1983. Infestation of a sweetpotato weevil (Coleoptera: Curculionidae) as influenced by pest management techniques. J Econ Entomol. 76:342–344.Google Scholar
  38. Tansey, J. A., Dosdall, L. M., Keddie, B. A., and Noble, S. D. 2010. Contributions of visual cues to cabbage seedpod weevil, Ceutorhynchus obstrictus (Marsham) (Coleoptera: Curculionidae), resistance in novel host genotypes. Crop Prot. 29:476–481.CrossRefGoogle Scholar
  39. Uritani, I., Saito, T., Honda, H., and Kim, W. K. 1975. Introduction of furano-terpenoids in sweet potato roots by the larval components of the sweet potato weevils. Agric Biol Chem. 37:1857–1862.CrossRefGoogle Scholar
  40. Woolfe, J. A. 1992. pp. 643, Sweetpotato: An Untapped Food Resource. Cambridge University Press, Cambridge, England.Google Scholar
  41. Wrolstad, R. E., Durst, R. W., and Lee, J. 2005. Tracking color and pigment changes in anthocyanin products. Trends Food Sci Tech. 16:423–428.CrossRefGoogle Scholar
  42. Yasuda, K. 1995. Mass trapping of the sweetpotato weevil Cylas formicarius (Fabricius) (Coleoptera: Brentidae) with a synthetic sex pheromone. Appl Entomol Zool. 30:31–36.Google Scholar
  43. Yasuda, K., Sugie, H., and Heath, R. R. 1992. Field evaluation of synthetic sex-attractant pheromone of the sweet-potato weevil, Cylas formicarius Fabricius (Coleoptera: Brentidae). Japan J Appl Entomol Zool. 36:81–87.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • G. V. P. Reddy
    • 1
  • Nirupa Gadi
    • 2
  • Anthony J. Taianao
    • 2
  1. 1.Western Triangle Ag Research CenterMontana State UniversityConradUSA
  2. 2.Western Pacific Tropical Research Center, College of Natural and Applied SciencesUniversity of GuamMangilaoUSA

Personalised recommendations