Advertisement

Journal of Chemical Ecology

, Volume 38, Issue 6, pp 665–703 | Cite as

Volatile Mediated Interactions Between Bacteria and Fungi in the Soil

  • Uta Effmert
  • Janine Kalderás
  • René Warnke
  • Birgit PiechullaEmail author
Review Article

Abstract

Soil is one of the major habitats of bacteria and fungi. In this arena their interactions are part of a communication network that keeps microhabitats in balance. Prominent mediator molecules of these inter- and intraorganismic relationships are inorganic and organic microbial volatile compounds (mVOCs). In this review the state of the art regarding the wealth of mVOC emission is presented. To date, ca. 300 bacteria and fungi were described as VOC producers and approximately 800 mVOCs were compiled in DOVE-MO (database of volatiles emitted by microorganisms). Furthermore, this paper summarizes morphological and phenotypical alterations and reactions that occur in the organisms due to the presence of mVOCs. These effects might provide clues for elucidating the biological and ecological significance of mVOC emissions and will help to unravel the entirety of belowground‚ volatile-wired’ interactions.

Keywords

Bacteria Fungi Soil Volatiles Volatile mediated interactions 

Notes

Acknowledgments

The authors thank Prof. Hubert Bahl reading and correcting of Table 1 and the related chapter in the paper, Dr. Marco Kai for critical reading of the manuscript and for drawing Fig. 1, and Robert Penthin, who helped to develop the DOVE-MO database. We are grateful for the funding by the DFG (to BP153/26 and/28).

References

  1. Acea, M. J., Moore, C. R., and Alexander, M. 1988. Survival and growth of bacteria introduced into soil. Soil Biol. Biochem. 20:509–515.CrossRefGoogle Scholar
  2. Afsharmanesh, H., Ahmadzadeh, M., and Sharifi-Tehrani, A. 2006. Biocontrol of Rhizoctonia solani, the causal agent of bean damping-off by fluorescent pseudomonads. Commun. Agric. Appl. Biol. Sci. 71:1021–1029.PubMedGoogle Scholar
  3. Alekseeva, T. V. 2007. Soil microstructures and factors of its formation. Eurasian Soil Sci. 40:649–659.CrossRefGoogle Scholar
  4. Alharbi, S. A., Al-Harbi, N. A., Hajomer, S., Wainwright, M., and Aljohny, B. O. 2011. Study on the effect of bacterial and chemical volatiles on the growth of the fungus Aureobasidium pullulans. Afr. J. Microbiol. Res. 5:5245–5249.Google Scholar
  5. Anderson, A. J. 1992. The influence of the plant root on mycorrhizal formation, pp. 37–64, in M. J. Allen (ed.), Mycorrhizal Functioning. Chapman & Hall, New York, NY.Google Scholar
  6. Aochi, Y. O. and Farmer, W. J. 2005. Impact of soil microstructure on the molecular transport dynamics of 1,2-dichlorethane. Geoderma 127:137–153.CrossRefGoogle Scholar
  7. Asensio, D., Penuelas, J., Filella, I., and Llusia, J. 2007. On-line screening of soil VOCs exchange responses to moisture, temperature and root presence. Plant Soil 291:249–261.CrossRefGoogle Scholar
  8. Asensio, D., Owen, S. M., Llusia, J., and Penuelas, J. 2008. The distribution of volatile isoprenoids in the soil horizons around Pinus halepensis trees. Soil Biol. Biochem. 40:2937–2947.CrossRefGoogle Scholar
  9. Aspray, T. J., Eirian Jones, E., Whipps, J. M., and Bending, G. D. 2006. Importance of mycorrhization helper bacteria cell density and metabolite localization for the Pinus sylvestrisLactarius rufus symbiosis. FEMS Microbiol. Ecol. 56:25–33.PubMedCrossRefGoogle Scholar
  10. Atmosukarto, I., Castillo, U., Hess, W. M., Sears, J., and Strobel, G. 2005. Isolation and characterization of Muscodor albus I-41.3 s, a volatile antibiotic producing fungus. Plant Sci. 169:854–861.CrossRefGoogle Scholar
  11. Babaeipoor, E., Mirzaei, S., Danesh, Y. R., Arjmandian, A., and Chaichi, M. 2011. Evaluation of some antagonistic bacteria in biological control of Gaeumannomyces graminis var tritici causal agent of wheat take-all disease in Iran. Afr. J. Microbiol. Res. 5:5165–5173.Google Scholar
  12. Baldwin, I. T., Halitschke, R., Paschold, A., Von Dahl, C. C., and Preston, C. A. 2006. Volatile signaling in plant plant interactions: ‘Talking-Trees’ in the genomics era. Science 311:812–815.PubMedCrossRefGoogle Scholar
  13. Barbieri, E., Gioacchini, A. M., Zambonelli, A., Bertini, L., and Stocchi, V. 2005. Determination of microbial volatile organic compounds from Staphylococcus pasteuri against Tuber borchii using solid-phase microextraction and gas chromatography/ion trap mass spectrometry. Rapid Commun. Mass Sp. 19:3411–3415.CrossRefGoogle Scholar
  14. Beck, H. C., Hansen, A. M., and Lauritsen, F. R. 2002. Metabolite production and kinetics of branched-chain aldehyde oxidation in Staphylococcus xylosus. Enzyme Microb. Tech. 31:94–101.CrossRefGoogle Scholar
  15. Bending, G. D., Aspray, T. J., and Whipps, J. M. 2006. Significance of microbial interactions in the mycorrhizosphere. Adv. Appl. Microbiol. 60:97–132.PubMedCrossRefGoogle Scholar
  16. Bernier, S. P., Letoffe, S., Delepierre, M., and Ghigo, J. M. 2011. Biogenic ammonia modifies antibiotic resistance at a distance in physically separated bacteria. Mol. Microbiol. 81:705–716.PubMedCrossRefGoogle Scholar
  17. Bhattacharyya, P. N. and Jha, D. K. 2011. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World J. Microb. Biot.. doi: 10.1007/s11274-011-0979-9.
  18. Bianciotto, V., Minerdi, D., Perotto, S., and Bonfante, P. 1996. Cellular interactions between arbuscular mycorrhizal fungi and rhizosphere bacteria. Protoplasma 193:123–131.CrossRefGoogle Scholar
  19. Bjurman, J., Nordstr and, E., and Kristensson, J. 1997. Growth-phase-related production of potential volatile-organic tracer compounds by moulds on wood. Indoor Air 7:2–7.CrossRefGoogle Scholar
  20. Blom, D., Fabbri, C., Connor, E. C., Schiestl, F. P., Klauser, D. R., Bolle, R. T., Eberl, L., and Weisskopf, L. 2011a. Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ. Microbiol. 13:3047–3058.PubMedCrossRefGoogle Scholar
  21. Blom, D., Fabbri, C., Eberl, L., and Weisskopf, L. 2011b. Volatile-mediated killing of Arabidopsis thaliana by bacteria is mainly mediated due to hydrogen cyanide. Appl. Environ. Microbiol. 77:1000–1008.PubMedCrossRefGoogle Scholar
  22. Blumer, C. and Haas, D. 2000. Mechanism, regulation and ecological role of bacterial cyanide biosynthesis. Arch. Microbiol. 173:170–177.PubMedCrossRefGoogle Scholar
  23. Bonfante, P. and Anca, I. A. 2009. Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu. Rev. Microbiol. 63:363–383.PubMedCrossRefGoogle Scholar
  24. Börjesson, T., Stöllman, U., and Schnürer, J. 1990. Volatile metabolites and other indicators of Penicillium aurantiogriseum growth on different substrates. Appl. Environ. Microbiol. 56:3705–3710.PubMedGoogle Scholar
  25. Börjesson, T., Stöllman, U., and Schnürer, J. 1992. Volatile metabolites produced by six fungal species compared with other indicators of fungal growth on cereal grains. Appl. Environ. Microbiol. 58:2599–2605.PubMedGoogle Scholar
  26. Brimecombe, M. J., De Leij, F. A. A. M., and Lynch, J. M. 2007. Rhizodeposition and microbial populations, pp. 73–110, in R. Pinton, Z. Varanini, and P. Nannipieri (eds.), The Rhizosphere: Biochemistry and Organic Substances at the Soil-plant Interface. Taylor & Francis, Boca Raton, Florida.Google Scholar
  27. Brondz, I. and Olsen, I. 1991. Multivariate analyses of cellular fatty acids in Bacteroides, Prevotella, Porphyromonas, Wolinella, and Campylobacter spp. J. Clin. Microbiol. 29:183–189.PubMedGoogle Scholar
  28. Brown, M. E. 1973. Soil bacteriostasis limitation in growth of soil and rhizosphere bacteria. Can. J. Microbiol. 19:195–199.PubMedCrossRefGoogle Scholar
  29. Brown, R. B. 2003. Soil texture, pp. 1-7, in Fact Sheet SL-29. Soil and Water Science Department, Florida Cooperative Extension Service, Institute of Food and Agriculture Sciences, University of Florida.Google Scholar
  30. Bruce, A., Wheatley, R. E., Humphris, S. N., Hackett, C. A., and Florence, M. E. J. 2000. Production of volatile organic compounds by Trichoderma in media containing different amino acids and their effect on selected wood decay fungi. Holzforschung 54:481–486.CrossRefGoogle Scholar
  31. Bruce, A., Verrall, S., Hackett, C., and Wheatley, R. E. 2004. Identification of volatile organic compounds (VOCs) from bacteria and yeast causing growth inhibition of sapstain fungi. Holzforschung 58:193–198.CrossRefGoogle Scholar
  32. Bunge, M., Araghipour, N., Mikoviny, T., Dunkl, J., Schnitzhofer, R., Hansel, A., Schinner, F., Wisthaler, A., Margesin, R., and Mark, T. D. 2008. On-line monitoring of microbial volatile metabolites by proton transfer reaction-mass spectrometry. Appl. Environ. Microbiol. 74:2179–2186.PubMedCrossRefGoogle Scholar
  33. Calvet, C., Barea, J. M., and Pera, J. 1992. In vitro interactions between the vesicular-arbuscular mycorrhizal fungus Glomus mosseae and some saprophytic fungi isolated from organic substrates. Soil Biol. Biochem. 24:775–780.CrossRefGoogle Scholar
  34. Cao, Y., Zhang, Z., Ling, N., Yuan, Y., Zheng, X., Shen, B., and Shen, Q. 2011. Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots. Biol. Fertil. Soils 47:495–506.CrossRefGoogle Scholar
  35. Cehnu, C. and Stotzky, G. 2002. Interaction between microorganisms and soil particles: An overview, pp. 3–28, in P. M. Huang, J. M. Bollag, and N. Senesi (eds.), Interactions between soil particles and microorganisms. John Wiley & Sons, Hoboken, New York.Google Scholar
  36. Chakraborty, U., Chakraborty, B. N., Allay, S., De, U., and Chakraborty, A. P. 2011. Dual application of Bacillus pumilus and Glomus mosseae for improvement of health status of mandarin plants. Acta Hortic. 892:215–230.Google Scholar
  37. Champagne, P. P. and Ramsay, J. A. 2010. Dye decolorization and detoxification by laccase immobilized on porous glass beads. Bioresour. Technol. 101:2230–2235.PubMedCrossRefGoogle Scholar
  38. Chaurasia, B., Pandey, A., Palni, L. M. S., Trivedi, P., Kumar, B., and Colvin, N. 2005. Diffusible and volatile compounds produced by an antagonistic Bacillus subtilis strain cause structural deformations in pathogenic fungi in vitro. Microbiol. Res. 160:75–81.PubMedCrossRefGoogle Scholar
  39. Chen, F., Ro, D. K., Petri, J., Gershenzon, J., Bohlmann, J., Pichersky, E., and Tholl, D. 2004. Characterization of a root-specific Arabidopsis terpene synthase responsible for the formation of the volatile monoterpene 1,8-cineole. Plant Physiol. 135:1956–1966.PubMedCrossRefGoogle Scholar
  40. Chernin, L., Toklikishvili, N., Ovadis, M., Kim, S., Ben-ari, J., Khmel, I., and Vainstein, A. 2011. Quorum-sensing quenching by rhizobacterial volatiles. Environ. Microbiol. Rep. 3:698–704.CrossRefGoogle Scholar
  41. Chiron, N. and Michelot, D. 2005. Mushrooms odors, chemistry and role in the biotic interactions – a review. Cryptogr. Mycol. 26:299–365.Google Scholar
  42. Chuankun, X., Minghe, M., Leming, Z., and Keqin, Z. 2004. Soil volatile fungistasis and volatile fungistatic compounds. Soil Biol. Biochem. 36:1997–2004.CrossRefGoogle Scholar
  43. Citron, C. A., Gleitzmann, J., Laurenzano, G., Pukall, R., and Dickschat, J. S. 2012. Terpenoids are widespread in actinomycetes: a correlation of secondary metabolism and genome data. Chem. Bio. Chem. 13:202–214.Google Scholar
  44. Compant, S., Clément, C., and Sessitsch, A. 2010. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem. 42:669–678.CrossRefGoogle Scholar
  45. Conklin, A. R. 2005. Introduction to soil chemistry. John Wiley & Sons, Hoboken, New York.CrossRefGoogle Scholar
  46. Crowe, J. D. and Olsson, S. 2001. Induction of laccase activity in Rhizoctonia solani by antagonistic Pseudomonas fluorescens strains and a range of chemical treatments. Appl. Environ. Microbiol. 67:2088–2094.PubMedCrossRefGoogle Scholar
  47. Daniel, R. 2011. Soil-based metagenomics, pp. 83-92, in F. J. de Bruijn (ed.). Handbook of Molecular Microbial Mycology II: Metagenomics in Different Habitats. John Wiley & Sons, Inc.Google Scholar
  48. Davis, R. D. 1976. Soil bacteriostasis: relation to bacterial nutrition and active soil inhibition. Soil Biol. Biochem. 8:429–433.Google Scholar
  49. Dequiedt, S., Saby, N. P. A., Lelievre, M., Jolivet, C., Thioulouse, J., Toutain, B., Arrouays, D., Bispo, A., Lemanceau, P., and Ranjard, L. 2011. Biogeographical patterns of soil molecular microbial biomass as influenced by soil characteristics and management. Global Ecol. Biogeogr. 20:641–652.CrossRefGoogle Scholar
  50. Dickschat, J. S. 2009. Quorum sensing and bacterial biofilms. Nat. Prod. Rep. 27:343–369.CrossRefGoogle Scholar
  51. Dickschat, J. S., Bode, H. B., Mahmud, T., Müller, R., and Schulz, S. 2005a. A novel type of geosmin biosynthesis in myxobacteria. J. Org. Chem. 70:5174–5182.CrossRefGoogle Scholar
  52. Dickschat, J. S., Bode, H. B., Wenzel, S. C., Müller, R., and Schulz, S. 2005b. Biosynthesis and identification of volatiles released by the myxobacterium Stigmatella aurantiaca. Chem. Biol. Chem. 6:2023–2033.Google Scholar
  53. Dickschat, J. S., Helmke, E., and Schulz, S. 2005c. Volatile organic compounds from arctic bacteria of the cytophaga-flavobacterium-bacteroides-group: A retrobiosynthetic approach in chemotaxonomic investigations. Chem. Biodivers. 2:318–353.CrossRefGoogle Scholar
  54. Dickschat, J. S., Martens, T., Brinkhoff, T., Simon, M., and Schulz, S. 2005d. Volatiles released by a Streptomyces species isolated from the North Sea. Chem. Biodivers. 2:837–865.CrossRefGoogle Scholar
  55. Dickschat, J. S., Nawrath, T., Thiel, V., Kunze, B., Müller, R., and Schulz, S. 2007. Biosynthese des Duftstoffes 2-Methylisoborneol durch das Myxobakterium Nannocystis exedens. Angew. Chem. - Ger. Edit. 119:8436–8439.Google Scholar
  56. Dickschat, J. S., Reichenbach, H., Wagner-Dobler, I., and Schulz, S. 2005e. Novel pyrazines from the myxobacterium Chondromyces crocatus and marine bacteria. Eur. J. Org. Chem. 19:4141–4153.CrossRefGoogle Scholar
  57. Dickschat, J. S., Wagner-Dobler, I., and Schulz, S. 2005f. The chafer pheromone buibuilactone and ant pyrazines are also produced by marine bacteria. J. Chem. Ecol. 31:925–947.CrossRefGoogle Scholar
  58. Dickschat, J. S., Wenzel, S. C., Bode, H. B., Müller, R., and Schulz, S. 2004. Biosynthesis of volatiles by the myxobacterium Myxococcus xanthus. Chem. Biol. Chem. 5:778–787.Google Scholar
  59. Dighton, J. 2003. Fungi in ecosystem processes. Marcel Dekker, New York, NY.CrossRefGoogle Scholar
  60. Dobbs, C. G. and Hinson, W. H. 1953. A widespread fungistasis in soils. Nature 172:197–199.PubMedCrossRefGoogle Scholar
  61. Dobson, H. E. M. 2006. Relationship between floral fragrance composition and type of pollinator, pp. 147–198, in E. Pichersky and N. Dudareva (eds.), Biology of floral scents. Taylor & Francis Group, Boca Raton.CrossRefGoogle Scholar
  62. Duponnois, R., Ba, A. M., and Mateille, T. 1998. Effect of some rhizosphere bacteria for the biocontrol of nematodes of the genus Meloidogyne with Arthrobotrys oligospora. Fundam. Appl. Nematol. 21:157–163.Google Scholar
  63. Ercolini, D., Russo, F., Nasi, A., Ferranti, P., and Villani, F. 2009. Mesophilic and psychrotrophic bacteria from meat and their spoilage potential in vitro and in beef. Appl. Environ. Microbiol. 75:1990–2001.PubMedCrossRefGoogle Scholar
  64. Ezeonu, I. M., Price, D. L., Simmons, R. B., Crow, S. A., and Ahearn, D. G. 1994. Fungal production of volatiles during growth on fiberglass. Appl. Environ. Microbiol. 60:4172–4173.PubMedGoogle Scholar
  65. Farag, M. A., Ryu, C. M., Summer, L. W., and Pare, P. W. 2006. GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 67:2262–2268.PubMedCrossRefGoogle Scholar
  66. Farmer, E. E. 2001. Surface-to-air signals. Nature 411:854–856.PubMedCrossRefGoogle Scholar
  67. Fernando, W. G. D., Ramarathnam, R., Krishnamoorthy, A. S., and Savchuk, S. C. 2005. Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol. Biochem. 37:955–964.CrossRefGoogle Scholar
  68. Fiddaman, P. J. and Rossall, S. 1993. The production of antifungal volatiles by Bacillus subtilis. J. Appl. Bacteriol. 74:119–126.PubMedCrossRefGoogle Scholar
  69. Fiddaman, P. J. and Rossall, S. 1994. Effect of substrate on the production of antifungal volatiles from Bacillus subtilis. J. Appl. Bacteriol. 76:395–405.PubMedCrossRefGoogle Scholar
  70. Fischer, G., Schwalbe, R., Möller, M., and Ostrowski, R. 1999. Species-spezific production on microbial volatile organic compounds (MVOC) by airborne fungi from a compost facility. Chemosphere 39:795–810.PubMedCrossRefGoogle Scholar
  71. Forster, R. C. 1988. Microenvironments of soil microorganisms. Biol. Fertil. Soils 6:189–203.Google Scholar
  72. Freeman, L. R., Silverman, G. J., Angelini, P., Merritt Jr., C., and Esselen, W. B. 1976. Volatiles produced by microorganisms isolated from refrigerated chicken at spoilage. Appl. Environ. Microbiol. 32:222–231.PubMedGoogle Scholar
  73. Frey-Klett, P., Garbaye, J., and Tarkka, M. 2007. The mycorrhiza helper bacteria revisited. New Phytol. 176:22–36.PubMedCrossRefGoogle Scholar
  74. Fuchs, G. 2007. Allgemeine Hikrobiologie, 8th edn. http://www.kluweronline.com/issn/0098-0331.
  75. Gans, J., Wolinsky, M., and Dunbar J. 2005. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science. 26;309(5739):1387–1390.Google Scholar
  76. Garbaye, J. and Duponnois, R. 1992. Specificity and function of mycorrhization helper bacteria (MHB) associated with the Pseudotsuga menziesiiLaccaria laccata symbiosis. Symbiosis 14:335–344.Google Scholar
  77. Garbeva, P., Hol, W. H. G., Termorshuizen, A. J., Kowalchuk, G. A., and De Boer, W. 2011. Fungistasis and general soil biostasis - A new synthesis. Soil Biol. Biochem. 43:469–477.CrossRefGoogle Scholar
  78. Gasch, A. P. 2007. Comparative genomics of the environmental stress response in ascomycete fungi. Yeast 24:961–976.PubMedCrossRefGoogle Scholar
  79. Gerber, N. N. and Lechevalier, H. A. 1965. Geosmin, an earthy-smelling substance isolated from actinomycetes. Appl. Microbiol. 13:935–938.PubMedGoogle Scholar
  80. Gottschalk, G. 1986. Bacterial metabolism. Springer Verlag, Heidelberg.CrossRefGoogle Scholar
  81. Gregory, P. J. 2006. Roots, rhizosphere and soil: the route to a better understanding of soil science? Eur. J. Soil Sci. 57:2–12.CrossRefGoogle Scholar
  82. Griffin, G. J., Hora, T. S., and Baker, R. 1975. Soil fungistasis: elevation of the exogenous carbon and nitrogen requirements for spore germination by fungistatic volatiles in soil. Can. J. Microbiol. 21:1468–1475.PubMedCrossRefGoogle Scholar
  83. Gu, Y. Q., Mo, M. H., Zhou, J. P., Zou, C. S., and Zhang, K. Q. 2007. Evaluation and identification of potential organic nematicidal volatiles from soil bacteria. Soil Biol. Biochem. 39:2567–2575.CrossRefGoogle Scholar
  84. Haas, D. and Défago, G. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3:307–319.PubMedCrossRefGoogle Scholar
  85. Hartmann, A., and Schikora, A. 2012. Quorum sensing of bacteria and trans-kingdom interactions of N-acyl homoserine lactones with eukaryotes. J. Chem. Ecol., this issue.Google Scholar
  86. Hawksworth, D. L. and Mueller, G. M. 2005. Fungal communities: their diversity and distribution, pp. 27–37, in J. Dighton, J. F. White, and P. Oudemans (eds.), The fungal community. Taylor & Francis, Boca Raton, Florida.CrossRefGoogle Scholar
  87. Heil, M. and Ton, J. 2008. Long-distance signalling in plant defence. Trends Plant Sci. 13:264–272.PubMedCrossRefGoogle Scholar
  88. Heil, M. and Walters, D. R. 2009. Ecological consequences of plant defence signalling. Adv. Bot. Res. 51:667–716.CrossRefGoogle Scholar
  89. Herrington, P. R., Craig, J. T., and Sheridan, J. E. 1987. Methyl vinyl ketone: a volatile fungistatic inhibitor from Streptomyces griseoruber. Soil Biol. Biochem. 19:509–512.CrossRefGoogle Scholar
  90. Heuer, H. and Smalla, K. 2012. Plasmids foster diversification and adaptation of bacterial populations in soil. FEMS Microbiol. Rev. doi: 10.1111/j.1574-6976.2012.00337.x
  91. Hibbing, M. E., Fuqua, C., Parsek, M. R., and Peterson, S. B. 2010. Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 8:15–25.PubMedCrossRefGoogle Scholar
  92. Hinton, A. and Hume, M. E. 1995. Antibacterial activity of the metabolic by-products of a Veillonella species and Bacteroides fragilis. Anaerobe 1:121–127.PubMedCrossRefGoogle Scholar
  93. Ho, W. C. and Ko, W. H. 1982. Characteristics of soil microbiostasis. Soil Biol. Biochem. 14:589–593.CrossRefGoogle Scholar
  94. Höckelmann, C. and Jüttner, F. 2004. Volatile organic compound (VOC) analysis and sources of limonene, cyclohexanone and straight chain aldehydes in axenic cultures of Calothrix and Plectonema. Water Sci. Technol. 49:47–54.PubMedGoogle Scholar
  95. Höckelmann, C., Moens, T., and Friedrich, J. 2004. Odor compounds from cyanobacterial biofilms acting as attractants and repellents for free-living nematodes. Limnol. Oceanogr. 49:1809–1819.CrossRefGoogle Scholar
  96. Hora, T. S. and Baker, R. 1972. Soil fungistasis: microflora producing a volatile inhibitor. Trans. Br. Mycol. Soc. 59:491–500.CrossRefGoogle Scholar
  97. Horii, S. and Ishii, T. 2006. Identification and function of Gigaspora margarita growth-promoting microorganisms. Symbiosis 41:135–141.Google Scholar
  98. Howell, C. R., Beier, R. C., and Stipanovic, R. D. 1988. Production of ammonia by Enterobacter cloacae and its possible role in the biological control of Pythium preemergence damping-off by the bacterium. Ecol. Epidemiol. 78:1075–1078.Google Scholar
  99. Huang, C-J., Tsay, J-F., Chang, S-Y., Yang, H-P., Wu, W-S., and Chen, C-Y. 2012. Dimethyl disulfide is an induced systemic resistance-elicitor produced by Bacillus cereus C1L. Soc. Chem. Ind.; doi: 10.1002/ps.3301
  100. Hussain, A. and Hasnain, S. 2011. Interactions of bacterial cytokinins and IAA in the rhizosphere may alter phytostimulatory efficiency of rhizobacteria. World J. Microbiol. Biotechnol. 27:2645–2654.CrossRefGoogle Scholar
  101. Insam, H. and Seewald, M. S. A. 2010. Volatile organic compounds (VOCs) in soils. Biol. Fertil. Soils 46:199–213.CrossRefGoogle Scholar
  102. Jacobson, E. S. 2000. Pathogenic roles for fungal melanins. Clin. Microbiol. Rev. 13:708–717.PubMedCrossRefGoogle Scholar
  103. Jamalizadeh, M., Etebarian, H. R., Aminian, H., and Alizadeh, A. 2010. Biological control of Botrytis mali on apple fruit by use of Bacillus bacteria, isolated from the rhizosphere of wheat. Arch. Phytopathol. Pl. 43:1836–1845.CrossRefGoogle Scholar
  104. Jelen, H. H. 2003. Use of solid phase microextraction (SPME) for profiling fungal volatile metabolites. Lett. Appl. Microbiol. 36:263–267.PubMedCrossRefGoogle Scholar
  105. Jelen, H. H., Mirocha, C. J., Wasowicz, E., and Kaminski, E. 1995. Production of volatile sesquiterpenes by Fusarium sambucinum strains with different abilities to synthesize trichothecenes. Appl. Environ. Microbiol. 61:3815–3820.PubMedGoogle Scholar
  106. Jung, S. C., Martinez-Medina, A., Lopez-Raez, J. A., and Pozo, M. J. 2012. Mycorrhiza-induced resistance and priming of plant defenses. J. Chem. Ecol., this issue.Google Scholar
  107. Kai, M., Effmert, U., Berg, G., and Piechulla, B. 2007. Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Arch. Microbiol. 187:351–360.PubMedCrossRefGoogle Scholar
  108. Kai, M., Vespermann, A., and Piechulla, B. 2008. The growth of fungi and Arabidopsis thaliana is influenced by bacterial volatiles. Plant Signal. Behav. 3:1–3.CrossRefGoogle Scholar
  109. Kai, M., Haustein, M., Molina, F., Petri, A., Scholz, B., and Piechulla, B. 2009. Bacterial volatiles and their action potential. Appl. Microbiol. Biotechnol. 81:1001–1013.PubMedCrossRefGoogle Scholar
  110. Kai, M., Crespo, E., Cristescu, S. M., Harren, F. J. M., and Piechulla, B. 2010. Serratia odorifera: analysis of volatile emission and biological impact of volatile compounds on Arabidopsis thaliana. Appl. Microbiol. Biotechnol. 88:965–976.PubMedCrossRefGoogle Scholar
  111. Kalderas, J. 2011. Erfassung, Analyse und Datenbank – Integration flüchtiger Metabolite von Pilzen und anderen Mikroorganismen. Diploma Thesis, University of RostockGoogle Scholar
  112. Kaminski, E., Stawicki, S., and Wasowicz, E. 1974. Volatile flavor compounds produced by molds of Aspergillus, Penicillum and fungi imperfecti. Appl. Microbiol. 27:1001–1004.PubMedGoogle Scholar
  113. Kesselmeier, J. and Staudt, M. 1999. Biogenic volatile organic compounds VOC - an overview on emission, physiology and ecology. J. Atmos. Chem. 33:23–88.CrossRefGoogle Scholar
  114. Ko, W. H. and Chow, F. K. 1977. Characteristics of bacteriostasis in natural soils. J. Gen. Microbiol. 102:295–298.Google Scholar
  115. Koske, R. E. and Gemma, J. N. 1992. Fungal reactions to plants prior to mycorrhizal formation, pp. 3–36, in M. J. Allen (ed.), Mycorrhizal functioning. Chapman & Hall, New York, NY.Google Scholar
  116. Kurita-Ochiai, T., Fukushima, K., and Ochiai, K. 1995. Volatile fatty acids, metabolic by-products of periodontopathic bacteria, inhibit lymphocyte proliferation and cytokine production. J. Dent. Res. 74:1367–1373.PubMedCrossRefGoogle Scholar
  117. Labows, J. N., Mcginley, K. J., Webster, G. F., and Leyden, J. J. 1980. Headspace analysis of volatile metabolites of Pseudomonas aeruginosa and related species by gas chromatography-mass spectrometry. J. Clin. Microbiol. 2:521–526.Google Scholar
  118. Lee, M. L., Smith, D. L., and Freeman, L. R. 1979. High resolution gas chromatographic profiles of volatile organic compounds produced by microorganisms at refrigerated temperatures. Appl. Environ. Microbiol. 37:85–90.PubMedGoogle Scholar
  119. Leff, J. W. and Fierer, N. 2008. Volatile organic compound (VOC) emissions from soil and litter samples. Soil Biol. Biochem. 40:1629–1636.CrossRefGoogle Scholar
  120. Lenc, L., Kwaśna, H., and Sadowski, C. 2011. Dynamics of the root/soil pathogens and antagonists in organic and integrated production of potato. Eur. J. Plant Pathol. 131:603–620.CrossRefGoogle Scholar
  121. Lin, H. C. and Phelan, P. L. 1992. Comparisons of volatiles from beetle-transmitted Ceratocystis fagacearum and four non-insect-dependent fungi. J. Chem. Ecol. 18:1623–1632.CrossRefGoogle Scholar
  122. Linton, C. W. and Wright, S. J. L. 1993. Volatile organic compounds: microbial aspects and some technical implications. J. Appl. Bacteriol. 75:1–12.CrossRefGoogle Scholar
  123. Logeshwarn, P., Thangaraju, M., and Rajasundari, K. 2011. Antagonistic potential of Gluconacetobacter diazotrophicus against Fusarium oxysporum in sweet potato (Ipomea batatus). Arch. Phytopathol. Pl. 44:216–223.CrossRefGoogle Scholar
  124. Lütke-Eversloh, T. and Bahl, H. 2011. Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Curr. Opin. Biotechn. 22:634–647.CrossRefGoogle Scholar
  125. Mackie, A. E. and Wheatley, R. E. 1999. Effects and incidence of volatile organic compound interactions between soil bacterial and fungal isolates. Soil Biol. Biochem. 31:375–385.CrossRefGoogle Scholar
  126. March, R. E., Richard, D. S., and Ryan, R. W. 2006. Volatile compounds from six species of truffle – head-space analysis and vapor analysis at high mass resolution. Int. J. Mass Spectrom. 249–250:60–67.Google Scholar
  127. Martinez, A., Obertello, M., Pardo, A., Ocampo, J., and Godeas, A. 2004. Interactions between Trichoderma pseudokoningii strains and the arbuscular mycorrhizal fungi Glomus mosseae and Gigaspora rosea. Mycorrhiza 14:79–84.PubMedCrossRefGoogle Scholar
  128. Mattheis, J. P. and Roberts, R. G. 1992. Identification of geosmin as a volatile metabolite of Penicillium expansum. Appl. Environ. Microbiol. 58:3170–3172.PubMedGoogle Scholar
  129. Matysika, S., Herbarth, O., and Mueller, A. 2008. Determination of volatile metabolites originating from mould growth on wall paper and synthetic media. J. Microbiol. Methods 75:182–187.CrossRefGoogle Scholar
  130. McAllister, C. B., Garcia-Garrido, J. M., Garcia-Romera, I., Godeas, A., and Ocampo, J. A. 1996. In vitro interactions between Alternaria alternata, Fusarium equiseti and Glomus mosseae. Symbiosis 20:163–174.Google Scholar
  131. McCain, A. H. 1966. A volatile antibiotic by Streptomyces griseus. Phytopathology 56:150.Google Scholar
  132. McNeal, K. S. and Herbert, B. E. 2009. Volatile organic metabolites as indicators of soil microbial activity and community composition shifts. Soil Sci. Soc. Am. J. 73:579–588.CrossRefGoogle Scholar
  133. Menetrez, M. Y. and Foarde, K. K. 2002. Microbial volatile organic compound emission rates and exposure model. Indoor Built Environ. 11:208–213.Google Scholar
  134. Michalke, K., Wickenheiser, E. B., Mehring, M., Hirner, A. V., and Hensel, R. 2000. Production of volatile derivatives of metal (loid)s by microflora involved in anaerobic digestion of sewage sludge. Appl. Environ. Microbiol. 66:2791–2796.PubMedCrossRefGoogle Scholar
  135. Miller, A., Scanlan, R. A., Lee, J. S., and Libbey, L. M. 1973. Identification of the volatile compounds produced in sterile fish muscle (Sebastes melanops) by Pseudomonas fragi. Appl. Microbiol. 25:952–955.PubMedGoogle Scholar
  136. Minerdi, D., Moretti, M., Gilardi, G., Barberio, C., Gullino, M. L., and Garibaldi, A. 2008. Bacterial ectosymbionts and virulence silencing in a Fusarium oxysporum strain. Environ. Microbiol. 10:1725–1741.PubMedCrossRefGoogle Scholar
  137. Minerdi, D., Bossi, S., Gullino, M. L., and Garibaldi, A. 2009. Volatile organic compounds: a potential direct long-distance mechanism for antagonistic action of Fusarium oxysporum strain MSA35. Environ. Microbiol. 11:844–854.PubMedCrossRefGoogle Scholar
  138. Minnich, M. and Schumacher, B. 1993. Behavior and determination of volatile organic compounds in soil: A literature review. US Environmental Protection Agency. EPA 600/R-93/140:1–104.Google Scholar
  139. Miransari, M. 2011. Interactions between arbuscular mycorrhizal fungi and soil bacteria. Appl. Microbiol. Biotech. 89:917–930.CrossRefGoogle Scholar
  140. Morra, M. J. and Dick, W. A. 1991. Mechanisms of H2S production from cysteine and cystine by microorganisms isolated from soil by selective enrichment. Appl. Environ. Microbiol. 57:1413–1417.PubMedGoogle Scholar
  141. Naeem, S. 1997. Species redundancy and ecosystem reliability. Conserv. Biol. 12:39–45.Google Scholar
  142. Nakas, J. P. and Klein, D. A. 1980. Mineralization capacity of bacteria and fungi from the rhizosphere-rhizoplane of a semiarid grassland. Appl. Environ. Microbiol. 39:113–117.PubMedGoogle Scholar
  143. Nannipieri, P., Ascher, J., Ceccherini, M. T., Landi, L., Pietramellara, G., and Renella, G. 2003. Microbial diversity and soil functions. Eur. J. Soil Sci. 54:655–670.CrossRefGoogle Scholar
  144. Nannipieri, P., Ascher, J., Ceccherini, M. T., Landi, L., Pietramellara, G., Renella, G., and Valori, F. 2007. Microbial diversity and microbial activity in the rhizosphere. Ciencia del suelo (ARGENTINA) 25:89–97.Google Scholar
  145. Nawrath, T., Dickschat, J. S., Müller, R., Jiang, J., Cane, D. E., and Schulz, S. 2008. Identification of (8S, 9S, 10S)-8, 10-dimethyl-1-octalin, a key intermediate in the biosynthesis of geosmin in bacteria. J. Am. Chem. Soc. 130:430–431.PubMedCrossRefGoogle Scholar
  146. Nieminen, T., Neubauer, P., Sivela, S., Vatamo, S., Silfverberg, P., and Salkinoja-Salonen, M. 2008. Volatile compounds produced by fungi grown in strawberry jam. LWT- Food Sci. Technol. 41:2051–2056.CrossRefGoogle Scholar
  147. Nijland, R. and Burgess, J. G. 2010. Bacterial olfaction. Biotechnol. J. 5:1–4.CrossRefGoogle Scholar
  148. Owen, S. M., Clark, S., Pompe, M., and Semple, K. T. 2007. Biogenic volatile organic compounds as potential carbon sources for microbial communities in soil from the rhizosphere of Populus tremula. FEMS Microbiol. Lett. 268:34–39.PubMedCrossRefGoogle Scholar
  149. Pal, K. K. and McSpadden Gardener, B. 2006. Biological control of Plant Pathogens. The Plant Health Instructor doi: 10.1094/PHI-A-2006-1117-02 http://www.apsnet.org/edcenter/advanced/topics/Pages/BiologicalControl.aspx.
  150. Palková, Z. and Váhová, L. 2003. Ammonia signaling in yeast colony formation. Int. Rev. Cytol. 225:229–272.PubMedCrossRefGoogle Scholar
  151. Pelusio, F., Nilsson, T., Montanarella, L., Tilio, R., Larsen, B., Facchetti, S., and Madsen, J. 1995. Headspace solid-phase microextraction analysis of volatile organic sulfur compounds in black and white truffle aroma. J. Agric. Food Chem. 43:2138–2143.CrossRefGoogle Scholar
  152. Pessi, G. and Haas, D. 2000. Transcriptional control of the hydrogen cyanide biosynthetic genes hcnABC by the anaerobic regulator ANR and the quorum sensing regulators LasR and RhlR in Pseudomonas aeruginosa. J. Bacteriol. 182:6940–6949.PubMedCrossRefGoogle Scholar
  153. Pittard, B. T., Freeman, L. R., Later, D. W., and Lee, M. L. 1982. Identification of volatile organic compounds produced by fluorescent pseudomonads on chicken breast muscle. Appl. Environ. Microbiol. 43:1504–1506.PubMedGoogle Scholar
  154. Ranjard, L. and Richaume, A. 2001. Quantitative and qualitative microscale distribution of bacteria in soil. Res. Microbiol. 152:707–716.PubMedCrossRefGoogle Scholar
  155. Rigamonte, T. A., Pylro, V. S., and Duarte G. F. 2010. The role of mycorrhization helper bacteria in the establishment and action of ectomycorrhizae associations. Braz. J. Microbiol. 41:832–840.Google Scholar
  156. Roesch, L. F., Fulthorpe, R. R., Riva, A., Casella, G., Hadwin, A. K., Kent, A. D., Daroub, S. H., Camargo, F. A., Farmerie, W. G., and Triplett, E.W. 2007. Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J. 1:283–290.Google Scholar
  157. Ruiz, R., Bilbao, R., and Murillo, M. B. 1998. Adsorption of different VOC onto soil minerals from gas phase; Influence of mineral, type of VOC, and air humidity. Environ. Sci. Technol. 32:1079–1864.CrossRefGoogle Scholar
  158. Ryan, R. P. and Dow, J. M. 2008. Diffusible signals and interspecies communication in bacteria. Microbiol. 154:1845–1858.CrossRefGoogle Scholar
  159. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Wie, H. X., Pare, P. W., and Kloepper, J. W. 2003. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 100:4927–4932.PubMedCrossRefGoogle Scholar
  160. Schafer, B. M. 2006. Particle shape, pp. 1249–1250, in W. Chesworth (ed.), Encyclopedia of soil science. Taylor & Francis, Boca Raton, Florida.Google Scholar
  161. Schäfer, H., Myronova, N., and Boden, R. 2010. Microbial degradation of dimethyldisulphide and related C1-sulphur compounds: organisms and pathways controlling fluxes of sulphur in the biosphere. J. Exp. Bot. 61:315–334.PubMedCrossRefGoogle Scholar
  162. Schippers, B., Meijer, J. W., and Liem, J. I. 1982. Effect of ammonia and other soil volatiles on germination and growth of soil fungi. Trans. Br. Mycol. Soc. 79:253–259.CrossRefGoogle Scholar
  163. Schöller, E. G., Gürtler, H., Pedersen, R., Molin, S., and Wilkins, K. 2002. Volatile metabolites from actinomycetes. J. Agric. Food Chem. 50:2615–2621.PubMedCrossRefGoogle Scholar
  164. Schrey, S. D., Schellhammer, M., Ecke, M., Hampp, R., and Tarkka, M. T. 2005. Mycorrhiza helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria. New Phytol. 168:205–216.PubMedCrossRefGoogle Scholar
  165. Schulz, S. and Dickschat, J. S. 2007. Bacterial volatiles: the smell of small organisms. Nat. Prod. Rep. 24:814–842.PubMedCrossRefGoogle Scholar
  166. Schulz, S., Fuhlendorff, J., and Reichenbach, H. 2004. Identification and synthesis of volatiles released by the myxobacterium Chondromyces crocatus. Tetrahedron 60:3863–3872.CrossRefGoogle Scholar
  167. Shatalin, K., Shatalina, E., Mironov, A., and Nudler, E. 2011. H2S: a universal defense against antibiotics in bacteria. Science. 334:986–990.Google Scholar
  168. Sobik, P., Grunenberg, J., Boöroöczky, J., Laatsch, H., Wagner-Doöbler, I., and Schulz, S. 2007. Identification, synthesis, and conformation of tri- and tetrathiacycloalkanes from marine bacteria. J. Org. Chem. 72:3776–3782.PubMedCrossRefGoogle Scholar
  169. Son, S. H., Khan, Z., Kim, S. G., and Kim, Y. H. 2009. Plant growth-promoting rhizobacteria, Paenibacillus polymyxa and Paenibacillus lentimorbus suppress disease complex caused by root-knot nematode and Fusarium wilt fungus. J. Appl. Microbiol. 107:524–532.PubMedCrossRefGoogle Scholar
  170. Standing, D. and Killham, K. 2007. The soil environment, pp. 1–22, in J. D. van Elsas, J. K. Jansson, and J. T. Trevors (eds.), Modern soil microbiology. Taylor & Francis, Boca Raton, Florida.Google Scholar
  171. Stoppacher, N., Kluger, B., Zeilinger, S., Krska, R., and Schuhmacher, R. 2010. Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. J. Microbiol. Methods 81:187–193.PubMedCrossRefGoogle Scholar
  172. Stotzky, G. and Schenck, S. 1976. Volatile organic compounds and microorganisms. CRC Crit. Rev. Microbiol. 4:333–382.PubMedCrossRefGoogle Scholar
  173. Stritzke, K., Schulz, S., Laatsch, H., Helmke, E., and Beil, W. 2004. Novel caprolactones from a marine streptomycete. J. Nat. Prod. 67:395–401.PubMedCrossRefGoogle Scholar
  174. Sunesson, A. L., Vaes, W. H. J., Nilsson, C. A., Blomquist, G., andersson, B., and Carlson, R. 1995. Identification of volatile metabolites from five fungal species cultivated on two media. Appl. Environ. Microbiol. 61:2911–2918.PubMedGoogle Scholar
  175. Sunesson, A. L., Nilsson, C. A., andersson, B., and Blomquist, G. 1996. Volatile metabolites produced by two fungal species cultivated on building materials. Ann. Occup. Hyg. 40:397–410.PubMedGoogle Scholar
  176. Tehrani, A. S., Disfani, F. A., Hedjaroud, G. A., and Mohammadi, M. 2001. Antagonistic effects of several bacteria on Verticillium dahliae the causal agent of cotton wilt. Meded. Rijksuniv. Gent Fak. Landbouwkd. Toegep. Biol. Wet. 66:95–101.PubMedGoogle Scholar
  177. Tehrani, A. S., Zebarjad, A., Hedjaroud, G. A., and Mohammadi, M. 2002. Biological control of soybean damping-off by antagonistic rhizobacteria. Meded. Rijksuniv. Gent Fak. Landbouwkd. Toegep. Biol. Wet. 67:377–380.Google Scholar
  178. Tracey, R. P. and Britz, T. J. 1989. Freon 11 extraction of volatile metabolites formed by certain lactic acid bacteria. Appl. Environ. Microbiol. 55:1617–1623.PubMedGoogle Scholar
  179. Tylka, G. L., Hussey, R. S., and Roncadori, R. W. 1991. Axenic germination of vesicular-arbuscular mycorrhizal fungi: effect of selected Streptomyces species. Phytopathology 81:754–759.CrossRefGoogle Scholar
  180. Van Lancker, F., Adams, A., Demulle, B., De Saeger, S., Moretti, A., Van Petheghem, C., and De Kimpe, N. 2008. Use of headspace SPME-GC-MS for the analysis of the volatiles produced by indoor molds grown on different substrates. J. Environ. Monit. 10:1127–1133.PubMedCrossRefGoogle Scholar
  181. Vespermann, A., Kai, M., and Piechulla, B. 2007. Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Appl. Environ. Microbiol. 73:5639–5641.PubMedCrossRefGoogle Scholar
  182. Voisard, C., Keel, C., Haas, D., and Défago, G. 1989. Cyanide production by Pseudomonas fluorescens helps to suppress black root of tobacco under gnotobiotic conditions. EMBO J. 8:351–358.PubMedGoogle Scholar
  183. Von Reuss, S., Kai, M., Piechulla, B., and Francke, W. 2010. Octamethylbicyclo(3.2.1)octadienes from Serratia odorifera. Angew. Chem. Int. Ed. 49:2009–2010.CrossRefGoogle Scholar
  184. Walker, T. S., Bais, H. P., Grotewold, E., and Vivanco, J. M. 2003. Root exudation and rhizosphere biology. Plant Physiol. 132:44–51.PubMedCrossRefGoogle Scholar
  185. Walker, T. S., Bais, H. P., Deziel, E., Schweitzer, H. P., Rahme, L. G., Fall, R., and Vivanco, J. M. 2004. Pseudomonas aeruginosa-plant root interactions. Pathogenicity, biofilm formations, and root exudation. Plant Physiol. 134:3210–3331.CrossRefGoogle Scholar
  186. Wan, M., Li, G., Zhang, J., Jiang, D., and Huang, H. C. 2008. Effect of volatile substances of Streptomyces platensis F-1 on control of plant fungal diseases. Biol. Control 46:552–559.CrossRefGoogle Scholar
  187. Wargo, M. J. and Hogan, D. A. 2006. Fungal-bacterial interactions: a mixed bag of mingling microbes. Curr. Opin. Microbiol. 9:359–364.PubMedCrossRefGoogle Scholar
  188. Weise, T., Kai, M., Gummesson, A., Troeger, A., Von Reuß, S., Piepenborn, S., Kosterka, F., Sklorz, M., Zimmermann, R., Francke, W., and Piechulla, B. 2012. Volatile organic compounds produced by the phytopathogenic bacterium Xanthomonas campestris pv. vesicatoria 85–10. Beilstein J. Org. Chem. 8:579–596.Google Scholar
  189. Wei-Wei, L., Wie, M., Bing-Yu, Z., You-Chen, D., and Feng, L. 2008. Antagonistic activities of volatiles from four strains of Bacillus spp. and Paenibacillus spp. against soil-borne plant pathogens. Agr. Sci. China 7:1104–1114.CrossRefGoogle Scholar
  190. Wenke, K., Kai, M., and Piechulla, B. 2009. Belowground volatiles facilitate interactions between plant roots and soil organisms. Planta 231:499–506.PubMedCrossRefGoogle Scholar
  191. Wenke, K., Weise, T., Warnke, R., Valverde, C., Wanke, D., Kai, M., and Piechulla, B. 2012. Bactertial volatiles mediating information between bacteria and plants, pp. 327–348, in G. Witzany (ed.), Biocommunication, signaling and communication in plants. Springer Verlag, Berlin, Heidelberg.CrossRefGoogle Scholar
  192. Wheatley, R. E. 2002. The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie Van Leeuwenhoek 81:357–364.PubMedCrossRefGoogle Scholar
  193. Wheatley, R., Hackett, C., Bruce, A., and Kundzewiczd, A. 1997. Effect of substrate composition on production of volatile organic compounds from Trichoderma spp. inhibitory to wood decay fungi. Int. Biodeterior Biodegradation 39:199–205.CrossRefGoogle Scholar
  194. Wiggins, R. J., Wilks, M., and Tabaqchali, S. 1985. Analysis by gas liquid chromatography of production of volatile fatty acids by anaerobic bacteria grown on solid medium. J. Clin. Pathol. 38:933–936.PubMedCrossRefGoogle Scholar
  195. Wilkins, K., Larsen, K., and Simkus, M. 2000. Volatile metabolites from mold growth on building materials and synthetic media. Chemosphere 41:437–446.PubMedCrossRefGoogle Scholar
  196. Will, M. E. and Sylvia, D. M. 1990. Interaction of rhizosphere bacteria, fertilizer, and vesicular-arbuscular mycorrhizal fungi with sea oats. Appl. Environ. Microbiol. 56:2073–2079.PubMedGoogle Scholar
  197. Will, C., Nacke, H., Thürmer, A., and Daniel, R. 2010. Schlaglicht Biodiversität/Charakterisierung und Nutzung der bakteriellen Diversität in Bodenmetagenomen. Genomxpress 1.10:9–11.Google Scholar
  198. Williamson, P. R. 1997. Laccase and melanin in the pathogenesis of Cryptococcus neoformans. Front. Biosci. 2:e99–e107.PubMedGoogle Scholar
  199. Winson, M. K., Camara, M., Latifi, A., Foglino, M., Chhabra, S. R., Daykin, M., Bally, M., Chapon, V., Salmond, G. P., Bycroft, B. W., et al. 1995. Multiple N-acyl-L-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. U.S.A. 92:9427–9431.PubMedCrossRefGoogle Scholar
  200. Wu, S., Krings, U., Zorn, H., and Berger, R. G. 2005. Volatile compounds from the fruiting bodies of beefsteak fungus Fistulina hepatica (Schaeffer: Fr.) Fr. Food Chem. 92:221–226.CrossRefGoogle Scholar
  201. Xavier, L. J. C. and Germida, J. J. 2003. Bacteria associated with Glomus clarum spores influence mycorrhizal activity. Soil Biol. Biochem. 35:471–478.CrossRefGoogle Scholar
  202. Xiao, X., Chen, H., Chen, H., Wang, J., Ren, C., and Wu, L. 2008. Impact of Bacillus subtilis JA, a biocontrol strain of fungal plant pathogens, on arbuscular mycorrhiza formation in Zea mays. World J. Microbiol. Biotechnol. 24:1133–1137.CrossRefGoogle Scholar
  203. Zhang, C. L., Wang, G. P., Mao, L. J., Komonzelazowska, M., Yuan, Z. L., Fu-Cheng Lin, F. C., Druzhinia, I. S., and Kubick, C. P. 2010. Muscodor fengyangensis sp. nov. from southeast China: morphology, physiology and production of volatile compounds. Fungal Biol. 114:797–808.PubMedCrossRefGoogle Scholar
  204. Zhao, L. J., Yang, X. N., Li, X. Y., Mu, W., and Liu, F. 2011. Antifungal, insecticidal and herbicidal properties of volatile components from Paenibacillus polymyxa Strain BMP-11. Agr. Sci. China 10:728–736.CrossRefGoogle Scholar
  205. Zhu, J., Bean, H. D., Kuo, Y. M., and Hill, J. E. 2010. Fast detection of volatile organic compounds from bacterial cultures by secondary electrospray ionization-mass spectrometry. Clin. Microbiol. 48:4426–4431.CrossRefGoogle Scholar
  206. Zou, C. S., Mo, M. H., Gu, Y. Q., Zhou, J. P., and Zhang, K. Q. 2007. Possible contribution of volatile-producing bacteria in soil fungistasis. Soil Biol. Biochem. 39:2371–2379.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Uta Effmert
    • 1
  • Janine Kalderás
    • 1
  • René Warnke
    • 1
  • Birgit Piechulla
    • 1
    Email author
  1. 1.Institute of Biological SciencesUniversity of RostockRostockGermany

Personalised recommendations