Journal of Chemical Ecology

, Volume 38, Issue 6, pp 615–628 | Cite as

Ecology and Evolution of Soil Nematode Chemotaxis

  • Sergio RasmannEmail author
  • Jared Gregory Ali
  • Johannes Helder
  • Wim H. van der Putten


Plants influence the behavior of and modify community composition of soil-dwelling organisms through the exudation of organic molecules. Given the chemical complexity of the soil matrix, soil-dwelling organisms have evolved the ability to detect and respond to these cues for successful foraging. A key question is how specific these responses are and how they may evolve. Here, we review and discuss the ecology and evolution of chemotaxis of soil nematodes. Soil nematodes are a group of diverse functional and taxonomic types, which may reveal a variety of responses. We predicted that nematodes of different feeding guilds use host-specific cues for chemotaxis. However, the examination of a comprehensive nematode phylogeny revealed that distantly related nematodes, and nematodes from different feeding guilds, can exploit the same signals for positive orientation. Carbon dioxide (CO2), which is ubiquitous in soil and indicates biological activity, is widely used as such a cue. The use of the same signals by a variety of species and species groups suggests that parts of the chemo-sensory machinery have remained highly conserved during the radiation of nematodes. However, besides CO2, many other chemical compounds, belonging to different chemical classes, have been shown to induce chemotaxis in nematodes. Plants surrounded by a complex nematode community, including beneficial entomopathogenic nematodes, plant-parasitic nematodes, as well as microbial feeders, are thus under diffuse selection for producing specific molecules in the rhizosphere that maximize their fitness. However, it is largely unknown how selection may operate and how belowground signaling may evolve. Given the paucity of data for certain groups of nematodes, future work is needed to better understand the evolutionary mechanisms of communication between plant roots and soil biota.


Carbon dioxide Caenorhabditis elegans Chemotaxis Entomopathogenic nematodes Functional phylogenetic Nematode Plant-parasitic nematodes Sense organs Soil chemical ecology 



We thank Larry W. Duncan, Raquel Campos-Herrera, Matthias Erb, and an anonymous reviewer for helpful comments. Our research is supported by an Ambizione fellowship from the Swiss National Science Foundation (PZ00P3_131956/1 to SR).


  1. Abou-Setta, M. M. and Duncan, L. W. 1998. Attraction of Tylenchulus semipenetrans and Meloidogyne javanica to salts in vitro. Nematropica 28(1):49–59.Google Scholar
  2. Ali, J. G., Alborn, H. T., Campos-Herrera, R., Kaplan, F., Duncan, L. W., Koppenhofer, A., Rodriguez-Saona, C., and Stelinski, L. L. 2012 In press. Subterranean, herbivore-induced plant volatile increases biological control activity of multiple beneficial nematode species in distinct habitats. PLos ONE.Google Scholar
  3. Ali, J., Alborn, H., and Stelinski, L. 2010. Subterranean herbivore-induced volatiles released by Citrus roots upon feeding by Diaprepes abbreviatus recruit entomopathogenic nematodes. J. Chem. Ecol. 36(4):361–368.PubMedCrossRefGoogle Scholar
  4. Ali, J. G., Alborn, H. T., and Stelinski, L. L. 2011. Constitutive and induced subterranean plant volatiles attract both entomopathogenic and plant parasitic nematodes. J. Ecol. 99(1):26–35.CrossRefGoogle Scholar
  5. Anderson, R. V. and Coleman, D. C. 1981. Population development and interactions between two species of bacteriophagic nematodes. Nematologica 27(1):6–19.CrossRefGoogle Scholar
  6. Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., and Vivanco, J. M. 2006. The role of root exudates in rhizosphere interations with plants and other organisms. Annu. Rev. Plant Biol. 57:233–266.PubMedCrossRefGoogle Scholar
  7. Balanova, J. and Balan, J. 1991. Chemotaxis-controlled search for food by the nematode Panagrellus redivivus. Biologia 46:257–263.Google Scholar
  8. Baldwin, J. G., Nadler, S. A., and Adams, B. J. 2004. Evolution of plant parasitism among nematodes. Annu. Rev. Phytopathol. 42:83–105.PubMedCrossRefGoogle Scholar
  9. Bargmann, C. I. and Horvitz, H. R. 1991. Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron 7:729–742.PubMedCrossRefGoogle Scholar
  10. Bargmann, C. I. and Mori, I. 1997. Chemotaxis and thermotaxis, pp. 717–737, in D. L. Riddle, T. Blumenthal, B. J. Meyer, and J. R. Preiss (eds.), C. elegans II, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (NY).Google Scholar
  11. Bezemer, T. M. and van Dam, N. M. 2005. Linking aboveground and belowground interactions via induced plant defenses. Trends Ecol. Evol. 20(11):617–624.PubMedCrossRefGoogle Scholar
  12. Bilgrami, A. L. 1997. Nematode biopesticides. Aligarh Muslim University, Aligarh, India. 262 p.Google Scholar
  13. Bilgrami, A. L., Kondo, E., and Yoshiga, T. 2001a. Absolute and relative preferential attraction of Steinernema glaseri to excretory substances of insects. Int. J. Nematol. 11:27–34.Google Scholar
  14. Bilgrami, A. L., Kondo, E., and Yoshiga, T. 2001b. Attraction response of Steinernema glaseri in presence of plant roots and leaves. Ann. Plant Protect. Sci. 9:258–263.Google Scholar
  15. Bird, A. F. 1960. Additional notes on the attractiveness of roots to plant parasitic nematodes. Nematologica 5:217.CrossRefGoogle Scholar
  16. Blaxter, M. L., de Ley, P., Garey, J. R., Liu, L. X., Scheldeman, P., Vierstraete, A., Vanfleteren, J. R., Mackey, L. Y., Dorris, M., Frisse, L. M., et al. 1998. A molecular evolutionary framework for the phylum Nematoda. Nature 392(6671):71–75.PubMedCrossRefGoogle Scholar
  17. Boff, M. I. C., Zoon, F. C., and Smits, P. H. 2001. Orientation of Heterorhabditis megidis to insect hosts and plant roots in a Y-tube sand olfactometer. Entomol. Exp. Appl. 98(3):329–337.CrossRefGoogle Scholar
  18. Boff, M. I. C., van Tol, R., and Smits, P. H. 2002. Behavioural response of Heterorhabditis megidis towards plant roots and insect larvae. Biocontrol 47(1):67–83.CrossRefGoogle Scholar
  19. Bonkowski, M., Villenave, C., and Griffiths, B. 2009. Rhizosphere fauna: the functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant Soil 321(1–2):213–233.CrossRefGoogle Scholar
  20. Buyer, J. S., Roberts, D. P., and Russek-Cohen, E. 2002. Soil and plant effects on microbial community structure. Can. J. Microbiol. 48(11):955–964.PubMedCrossRefGoogle Scholar
  21. Campbell, J. F. and Gaugler, R. 1993. Nictation behaviour and its ecological implications in the host search strategies of entomopathogenic nematodes (Heterorhabditidae and Steinernematidae). Behaviour 126:155–169.CrossRefGoogle Scholar
  22. Campbell, J. F. and Gaugler, R. R. 1997. Inter-specific variation in entomopathogenic nematode foraging strategy: Dichotomy or variation along a continuum? Fundam. Appl. Nematol. 20(4):393–398.Google Scholar
  23. Campbell, J. F., Lewis, E. E., Stock, S. P., Nadler, S., and Kaya, H. K. 2003. Evolution of host search strategies in entomopathogenic nematodes. J. Nematol. 35(2):142–145.PubMedGoogle Scholar
  24. Castro, C. E., Belser, N. O., McKinney, H. E., and Thomason, I. J. 1989. Quantitative bioassay for chemotaxis with plant-parasitic nematodes: attractant and repellent fractions for Meloidogyne incognita from cucumber roots. J. Chem. Ecol. 15(4):1297–1309.CrossRefGoogle Scholar
  25. Chapman, S. K., Langley, J. A., Hart, S. C., and Koch, G. W. 2006. Plants actively control nitrogen cycling: uncorking the microbial bottleneck. New Phytol. 169(1):27–34.PubMedCrossRefGoogle Scholar
  26. Chitwood, D. J. 2002. Phytochemical based strategies for nematode control. Annu. Rev. Phytopathol. 40:221–249.PubMedCrossRefGoogle Scholar
  27. Coleman, D. C. 1976. A review or root production processes and their infuence on soil biota in terrestrial ecosystems, pp. 417–434, in J. M. Anderson and A. Macfadyen (eds.), The Role of Terrestrial and Aquatic Organisms in Decomposition Processes. Blackwell Scientific Publications, London.Google Scholar
  28. Coleman, D. C., Crossley, D. A., and Hendrix, P. F. 2004. Fundamentals of Soil Ecology. Elsevier, Burlington, San Diego, London. 386 p.Google Scholar
  29. Curtis, R. H. C., Robinson, A. F., and Perry, R. N. 2009. Hatch and host location, pp. 139–155, in R. N. Perry, M. Moens, and J. L. Starr (eds.), Root-Knot Nematodes. CAB International, Wallingford, UK and Cambridge, USA.CrossRefGoogle Scholar
  30. De Deyn, G. B., Raaijmakers, C. E., Zoomer, H. R., Berg, M. P., de Ruiter, P. C., Verhoef, H. A., Bezemer, T. M., and van der Putten, W. H. 2003. Soil invertebrate fauna enhances grassland succession and diversity. Nature 422(6933):711–713.PubMedCrossRefGoogle Scholar
  31. De Deyn, G. B., Raaijmakers, C. E., and van der Putten, W. H. 2004. Plant community development is affected by nutrients and soil biota. J. Ecol. 92(5):824–834.CrossRefGoogle Scholar
  32. De La Peña, E., Rodriguez-Echeverria, S., van der Putten, W. H., Freitas, H., and Moens, M. 2006. Mechanism of control of root-feeding nematodes by mycorrhizal fungi in the dune grass Ammophila arenaria. New Phytol. 169(4):829–840.PubMedCrossRefGoogle Scholar
  33. de Ruiter, P. C., Moore, J. C., Zwart, K. B., Bouwman, L. A., Hassink, J., Bloem, J., de Vos, J. A., Marinissen, J. C. Y., Didden, W. A. M., Lebbink, G., et al. 1993. Simulation of nitrogen mineralization in the below-ground food webs of two winter wheat fields. J. Appl. Ecol. 30:95–106.CrossRefGoogle Scholar
  34. Devine, K. J. and Jones, P. W. 2003. Investigations into the chemoattraction of the potato cyst nematodes Globodera rostochiensis and G. pallida towards fractionated potato root leachate. Nematology 5(1):65–75.CrossRefGoogle Scholar
  35. Dougherty, E. C. and Nigon, V. 1949. A new species of the free-living nematode genus Rhabdilis of interest in comparative physiology and genetics. J. Parasitol. 35(suppl):11.Google Scholar
  36. Dusenbery, D. B. 1980. Responses of the nematode Caenorhabditis elegans to controlled chemical stimulation. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 136(4):327–331.CrossRefGoogle Scholar
  37. Dusenbery, D. B. 1987. Theoretical range over which bacteria and nematodes locate plant roots using carbon dioxide. J. Chem. Ecol. 13(7):1617–1624.CrossRefGoogle Scholar
  38. Edmunds, J. E. and Mai, W. F. 1967. Effects of Fusarium oxysporum on movement of Pratylenchus penetrans towards alfalfa roots. Phytopathology 57:468–471.Google Scholar
  39. Ennis, D. E., Dillon, A. B., and Griffin, C. T. 2010. Simulated roots and host feeding enhance infection of subterranean insects by the entomopathogenic nematode Steinernema carpocapsae. J. Invert. Pathol. 103(2):140–143.CrossRefGoogle Scholar
  40. Erb, M., Ton, J., Degenhardt, J., and Turlings, T. C. J. 2008. Interactions between arthropod-induced aboveground and belowground defenses in plants. Plant Physiol. 146(3):867–874.PubMedCrossRefGoogle Scholar
  41. Fogel, R. 1985. Roots as primary producers in below-ground ecosystems, pp. 23–36, in A. H. Fitter, D. Atkinson, D. J. Read, and M. B. Usher (eds.), Ecological Interactions in Soil: Plants, Microbes, and Animals. Blackwell, Oxford.Google Scholar
  42. Franco, J., Main, G., and Oros, R. 1999. Trap crops as a component for the integrated management of Globodera spp. (potato cyst nematodes) in Bolivia. Nematropica 29:51–60.Google Scholar
  43. Fu, S., Ferris, H., Brown, D., and Plant, R. 2005. Does the positive feedback effect of nematodes on the biomass and activity of their bacteria prey vary with nematode species and population size? Soil Biol. Biochem. 37:1979–1987.CrossRefGoogle Scholar
  44. Gange, A. C. and Brown, V. K. 2002. Multitrophic Interactions in Terrestrial Systems. Cambridge University Press, Cambridge, UK.Google Scholar
  45. Gaugler, R. (ed.) 2002. Entomopathogenic Nematology. CABI, New York, USA.Google Scholar
  46. Gaugler, R. and Bilgrami, A. L. (eds.) 2004. Nematode Behaviour. CABI, New York, USA.Google Scholar
  47. Gaugler, R. and Kaya, H. K. 1990. Entomopathogenic Nematodes in Biological Control. CRC Press, Boca Raton, Florida, USA.Google Scholar
  48. Giebel, J. 1982. Mechanism of resistance to plant nematodes. Annu. Rev. Phytopathol. 20:257–279.CrossRefGoogle Scholar
  49. Goode, M. and Dusenbery, D. B. 1985. Behavior of tethered Meloidogyne incognita. J. Nematol. 17(4):460–464.PubMedGoogle Scholar
  50. Grewal, P. S., Lewis, E. E., Gaugler, R., and Campbell, J. F. 1994. Host finding behavior as a predictor of foraging strategy in entomopathogenic nematodes. Parasitology 108:207–215.CrossRefGoogle Scholar
  51. Hallem, E. A., Dillman, A. R., Hong, A. V., Zhang, Y. J., Yano, J. M., Demarco, S. F., and Sternberg, P. W. 2011. A sensory code for host seeking in parasitic nematodes. Curr. Biol. 21(5):377–383.PubMedCrossRefGoogle Scholar
  52. Hara, A. H., Gaugler, R., Kaya, H. K., and Lebeck, L. M. 1991. Natural populations of entomopathogenic nematodes (Rhabditida, Heterorhabditidae, Steinernematidae) from the Hawaiian islands. Environ. Entomol. 20(1):211–216.Google Scholar
  53. Hare, J. D. 2011. Ecological role of volatiles produced by plants in response to damage by herbivorous insects. Annu. Rev. Entomol. 56:161–180.PubMedCrossRefGoogle Scholar
  54. Harvey, E. N. 1952. Bioluminescence. Academic, New York.Google Scholar
  55. Hedlund, K., Griffiths, B., Christensen, S., Scheu, S., Setälä, H., Tscharntke, T., and Verhoef, H. 2004. Trophic interactions in changing landscapes: responses of soil food webs. Basic Appl. Ecol. 5(6):495–503.CrossRefGoogle Scholar
  56. Hilliard, M. A., Bargmann, C. I., and Bazzicalupo, P. 2002. C. elegans responds to chemical repellents by integrating sensory inputs from the head and the tail. Curr. Biol. 12(9):730–734.PubMedCrossRefGoogle Scholar
  57. Hiltpold, I., Baroni, M., Toepfer, S., Kuhlmann, U., and Turlings, T. C. J. 2010. Selection of entomopathogenic nematodes for enhanced responsiveness to a volatile root signal helps to control a major root pest. J. Exp. Biol. 213(14):2417–2423.PubMedCrossRefGoogle Scholar
  58. Holterman, M., van der Wurff, A., van den Elsen, S., van Megen, H., Bongers, T., Holovachov, O., Bakker, J., and Helder, J. 2006. Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown clades. Mol. Biol. Evol. 23(9):1792–1800.PubMedCrossRefGoogle Scholar
  59. Huang, X., Huang, P., Robinson, M. K., Stern, M. J., and Jin, Y. 2003. UNC-71, a disintegrin and metalloprotease (ADAM) protein, regulates motor axon guidance and sex myoblast migration in C. elegans. Development 130(14)):3147–3161.PubMedCrossRefGoogle Scholar
  60. Hunter, M. D. 2001. Out of sight, out of mind: the impacts of root-feeding insects in natural and managed systems. Agric. For. Entomol. 3(1):3–9.CrossRefGoogle Scholar
  61. Ingham, R. E., Trofymow, J. A., Ingham, E. R., and Coleman, D. C. 1985. Interactions of bacteria, fungi and their nematode grazers on nutrient cycling and plant growth. Ecol. Monogr. 55:119–140.CrossRefGoogle Scholar
  62. Ishibashi, N. and Kondo, E. 1990. Behavior of infective juveniles, in R. Gaugler and H. K. Kaya (eds.), Entomopathogenic Nematodes in Biological Control. CRC, Boca Raton.Google Scholar
  63. Johnson, S. N. and Gregory, P. J. 2006. Chemically-mediated host-plant location and selection by root-feeding insects. Physiol. Entomol. 31(1):1–13.CrossRefGoogle Scholar
  64. Jones, J. 2002. Nematode sense organs, pp. 369–387, in D. L. Lee (ed.), The Biology of Nematodes. Taylor & Francis Inc, New York, NY, USA.Google Scholar
  65. Kaplan, I., Halitschke, R., Kessler, A., Sardanelli, S., and Denno, R. F. 2008. Constitutive and induced defenses to herbivory in above- and belowground plant tissues. Ecology 89(2):392–406.PubMedCrossRefGoogle Scholar
  66. Karban, R. and Baldwin, I. 1997. Induced Responses to Herbivory. University Press of Chicago, Chicago.Google Scholar
  67. Kaya, H. K. and Gaugler, R. 1993. Entomopathogenic nematodes. Annu. Rev. Entomol. 38:181–206.CrossRefGoogle Scholar
  68. Klinger, J. 1963. Die Orientierung von Ditylenchus dipsaci in gemessen kunstlichen und biologischen CO2 Gradienten. Nematologica 9:185–199.CrossRefGoogle Scholar
  69. Klinger, J. 1970. The reaction of Aphelenchoides fragrariae to slit-like micro-openings and to stomatal diffusion gases. Nematologica 16:417–422.CrossRefGoogle Scholar
  70. Klink, J. W. 1969. Studies on the host finding mechanisms of Neotylenchus linfordi. J. Nematol. 2:106–117.Google Scholar
  71. Kollner, T. G., Held, M., Lenk, C., Hiltpold, I., Turlings, T. C. J., Gershenzon, J., and Degenhardt, J. 2008. A maize (E)-beta-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties. Plant Cell 20(2):482–494.PubMedCrossRefGoogle Scholar
  72. Lee, D. L. 2002. Behaviour, pp. 369–387, in D. L. Lee (ed.), The Biology of Nematodes. Taylor & Francis Inc., New York, NY, USA.CrossRefGoogle Scholar
  73. Lewis, E. E., Gaugler, R., and Harrison, R. 1992. Entomopathogenic nematode host finding—Response to host contact cues by cruise and ambush foragers. Parasitology 105:309–315.CrossRefGoogle Scholar
  74. Lewis, E. E., Gaugler, R., and Harrison, R. 1993. Response of cruiser and ambusher entomopathogenic nematodes (Steinernematidae) to host volatile cues. Can. J. Zool.-Rev. Can. Zool. 71(4):765–769.CrossRefGoogle Scholar
  75. Luscher, A., Daepp, M., Blum, H., Hartwig, U. A., and Nosberger, J. 2004. Fertile temperate grassland under elevated atmospheric CO2—role of feed-back mechanisms and availability of growth resources. Eur. J. Agron. 21(3):379–398.CrossRefGoogle Scholar
  76. Masamune, T., Anetai, M., Takasugi, M., and Katsui, N. 1982. Isolation of a natural hatching stimulus, glycinoeclepin A, for the soybean cyst nematode. Nature 297(5866):495–496.CrossRefGoogle Scholar
  77. McCallum, M. E. and Dusenbery, D. B. 1992. Computer tracking as a behavioral GC detector: Nematode responses to vapor of host roots. J. Chem. Ecol. 18(4):585–592.CrossRefGoogle Scholar
  78. Moens, T., Verbeeck, L., de Maeyer, A., Swings, J., and Vincx, M. 1999. Selective attraction of marine bacterivorous nematodes to their bacterial food. Mar. Ecol. Prog. Ser. 176:165–178.CrossRefGoogle Scholar
  79. Mortimer, S. R., Putten, W. H. V. D., and Brown, V. K. 1999. Insect and nematode herbivory below ground: interactions and role in vegetation succession, pp. 205–238, in H. Olff, V. K. Brown, and R. H. Drent (eds.), HERBIVORES: Between Plants and Predators. Blackwell Science Ltd., Oxford.Google Scholar
  80. Bert, W., Karssen, G., and Helder J. 2011. Phylogeny and evolution of nematodes, pp 45–60, in J Jones, G Gheysen, C Fenoll (eds), Genomics and Molecular Genetics of Plant-Nematode Interactions. Springer Science+Business Media B.V.Google Scholar
  81. Erb M., Glauser G., and Robert C.A.M. 2012. Induced immunity against belowground insect herbivores-activation of defenses in the absence of a jasmonate burst. J. Chem. Ecol. 38(6):this issue.Google Scholar
  82. Hiltpold, I., and Turlings, T.C.J. 2012. Manipulation of chemically mediated interactions in agricultural soils to enhance the control of crop pests. J. Chem. Ecol. 38(6):this issue.Google Scholar
  83. JOHNSON, S.N., and NIELSEN, U.N. 2012. Foraging in the dark—Chemically mediated host plant location by belowground insect herbivores. J. Chem. Ecol. 38(6): this issue. Google Scholar
  84. Lewis E.E. 2002. Behavioural ecology, pp 205–223, in R Gaugler (ed.), Entomopathogenic Nematology. CAB International.Google Scholar
  85. Sengupta P., Colbert H.A., Kimmel B.E., Dwyer N., Bargmann C.I. 1993. The cellular and genetic basis of olfactory responses in Caenorhabditis elegans, pp. 235–250. Ciba Foundation Symposia.Google Scholar
  86. Turlings T.C.J., Hiltpold I., Rasmann S. 2012. The importance of root-produced volatiles as foraging cues for entomopathogenic nematodes. Plant Soil in press.Google Scholar
  87. O’Halloran, D. M. and Burnell, A. M. 2003. An investigation of chemotaxis in the insect parasitic nematode Heterorhabditis bacteriophora. Parasitology 127:375–385.PubMedCrossRefGoogle Scholar
  88. Perry, R. N. 1997. Plant signals in nematode hatching and attraction, pp. 38–50, in C. Fenoll, F. M. W. Grundler, and S. A. Ohl (eds.), Cellular and Molecular Aspects of Plant–Nematode Interactions. Kluwer Academic Press, Dordrecht, The Netherlands.CrossRefGoogle Scholar
  89. Perry, R. N. and Aumann, J. 1998. Behaviour and sensory responses, pp. 75–102, in R. N. Perry and D. J. Wright (eds.), The Physiology and Biochemistry of Free-living and Plant-parasitic Nematodes. CAB International Press, Wallingford, UK.Google Scholar
  90. Perry, R. N. and Wesemael, W. M. L. 2008. Host plant effects on hatching of root-knot nematodes. Russ. J. Nemat. 16(1):1–5.Google Scholar
  91. Perry, R. N., Moens, M., and Starr, J. L. 2009. Root-knot Nematodes. CAB International, Wallingford, UK and Cambridge, USA. 488 p.CrossRefGoogle Scholar
  92. Pline, M. and Dusenbery, D. B. 1987. Responses of plant-parasitic nematode Meloidogyne incognita to carbon dioxide determined by video camera-computer tracking. J. Chem. Ecol. 13(4):873–888.CrossRefGoogle Scholar
  93. Poinar, G. O. 1990. Taxonomy and Biology of Steneirnematidae and Herorhabditidae, in R. Gaugler and H. K. Kaya (eds.), Entomopathogenic Nematodes in Biological Control. CRC, Boca Raton.Google Scholar
  94. Poinar, G. O. 1993. Origins and phylogentic relationships of the entomophilic rhabditids, Heterorhabditis and Steinnernema. Fundam. Appl. Nematol. 16:333–338.Google Scholar
  95. Poinar, G. O. and Georgis, R. 1990. Description and field application of the HP88 strain of Heterorhabditis bacteriophora. Rev. Nématol. 13:387–393.Google Scholar
  96. Price, P. W., Bouton, C. E., Gross, P., McPheron, B. A., Thompson, J. N., and Weis, A. E. 1980. Interactions among three trophic levels: influence of plant on interactions between insect herbivores and natural enemies. Annu. Rev. Ecol. Syst. 11:41–65.CrossRefGoogle Scholar
  97. Prot, J. C. 1980. Migration of plant-parasitic nematodes towards plant roots. Rev. Nématol. 7:374–379.Google Scholar
  98. Rasmann, S. and Agrawal, A. A. 2008. In defense of roots: A research agenda for studying plant resistance to belowground herbivory. Plant Physiol. 146(3):875–880.PubMedCrossRefGoogle Scholar
  99. Rasmann, S. and Turlings, T. C. J. 2008. First insights into specificity of belowground tritrophic interactions. Oikos 117(3):362–369.CrossRefGoogle Scholar
  100. Rasmann, S., Kollner, T. G., Degenhardt, J., Hiltpold, I., Toepfer, S., Kuhlmann, U., Gershenzon, J., and Turlings, T. C. J. 2005. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434(7034):732–737.PubMedCrossRefGoogle Scholar
  101. Rasmann, S., Bauerle, T. L., Poveda, K., and Vannette, R. 2011a. Predicting root defence against herbivores during succession. Funct. Ecol. 25(2):368–379.CrossRefGoogle Scholar
  102. Rasmann, S., Erwin, A. C., Halitschke, R., and Agrawal, A. A. 2011b. Direct and indirect root defences of milkweed (Asclepias syriaca): trophic cascades, trade-offs and novel methods for studying subterranean herbivory. J. Ecol. 99(1):16–25.CrossRefGoogle Scholar
  103. Reinecke, A., Muller, F., and Hilker, M. 2008. Attractiveness of CO(2) released by root respiration fades on the background of root exudates. Basic Appl. Ecol. 9(5):568–576.CrossRefGoogle Scholar
  104. Riddle, D. L. and Bird, A. F. 1985. Responses of the plant parasitic nematodes Rotylenchulus reniformis, Anguina agrostis and Meloidogyne javanica to chemical attractants. Parasitology 91(01):185–195.PubMedCrossRefGoogle Scholar
  105. Riga, E. 2004. Orientation behaviour, pp. 63–90, in R. Gaugler and A. L. Bilgrami (eds.), Nematode Behaviour. CAB International Press, Wallingford, UK and Cambridge, USA.CrossRefGoogle Scholar
  106. Robinson, A. F. 1995. Optimal release rates for attracting Meloidogyne incognita by alginate pellets containing hyphae of Monacrosporium cionopagum, M. ellipsosporum, or Hirsutella rhossiliensis. J. Nematol. 28:133–147.Google Scholar
  107. Rolfe, R. N., Barrett, J., and Perry, R. N. 2000. Analysis of chemosensory responses of second stage juveniles of Globodera rostochiensis using electrophysiological techniques. Nematology 2(5):523–533.CrossRefGoogle Scholar
  108. Schenk, H., Driessen, R. A. J., de Gelder, R., Goubitz, K., Nieboer, H., Bruggemann-Rotgans, I. E. M., and Diepenhorst, P. 1999. Elucidation of the structure of Solanoeclepin A, a natural hatching factor of potato and tomato cyst nematodes, by single-crystal x-ray diffraction. Croat Chem Acta 72(2–3):593–606.Google Scholar
  109. Schoonhoven, L. M., van Loon, J. J. A., and Dicke, M. 2005. Insect-plant Biology. Oxford University Press, Oxford.Google Scholar
  110. Strong, D. R., Kaya, H. K., Whipple, A. V., Child, A. L., Kraig, S., Bondonno, M., Dyer, K., and Maron, J. L. 1996. Entomopathogenic nematodes: natural enemies of root-feeding caterpillars on bush lupine. Oecologia 108(1):167–173.CrossRefGoogle Scholar
  111. Strong, D. R., Whipple, A. V., Child, A. L., and Dennis, B. 1999. Model selection for a subterranean trophic cascade: root-feeding caterpillars and entomopathogenic nematodes. Ecology 80(8):2750–2761.CrossRefGoogle Scholar
  112. Tietjen, J. H., Lee, J. J., Rullman, J., Greengart, A., and Trompeter, J. 1970. Gnotobiotic culture and physiological ecology of the marine nematode, Rhabditis marina. Bastian. Limnol. Oceanogr. 15:535–543.CrossRefGoogle Scholar
  113. Tscharntke, T. and Hawkins, B. A. 2002. Multitrophic Level Interactions. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
  114. Valette, C., Andary, C., Geiger, J. P., Sarah, J. L., and Nicole, M. 1998. Histochemical and cytochemical investigations of phenols in roots of banana infected by the burrowing nematode Radopholus similis. Phytopathology 88(11):1141–1148.PubMedCrossRefGoogle Scholar
  115. Van Dam, N. M. 2009. Belowground herbivory and plant defenses. Annu. Rev. Ecol. Evol. Syst. 40:373–391.CrossRefGoogle Scholar
  116. Van der Putten, W. H. 2003. Plant defense belowground and spatiotemporal processes in natural vegetation. Ecology 84(9):2269–2280.CrossRefGoogle Scholar
  117. van der Putten, W. H., Vet, L. E. M., Harvey, J. A., and Wackers, F. L. 2001. Linking above- and belowground multitrophic interactions of plants, herbivores, pathogens, and their antagonists. Trends Ecol. Evol. 16(10):547–554.CrossRefGoogle Scholar
  118. Van der Putten, W. H., Bardgett, R. D., de Ruiter, P. C., Hol, W. H. G., Meyer, K. M., Bezemer, T. M., Bradford, M. A., Christensen, S., Eppinga, M. B., Fukami, T., et al. 2009. Empirical and theoretical challenges in aboveground-belowground ecology. Oecologia 161(1):1–14.PubMedCrossRefGoogle Scholar
  119. van Tol, R., van der Sommen, A. T. C., Boff, M. I. C., van Bezooijen, J., Sabelis, M. W., and Smits, P. H. 2001. Plants protect their roots by alerting the enemies of grubs. Ecol. Lett. 4(4):292–294.CrossRefGoogle Scholar
  120. Vet, L. E. M. and Dicke, M. 1992. Ecology of infochemical use by natural enemies in a tritrophic context. Annu. Rev. Entomol. 37:141–172.CrossRefGoogle Scholar
  121. Viglierchio, D. R. 1990. Carbon dioxide sensing by Panagrellus silusiae and Ditylenchus dipsaci. Rev. Nématol. 13:425–432.Google Scholar
  122. Viketoft, M., Bengtsson, J., Sohlenius, B., Berg, M. P., Petchey, O., Palmborg, C., and Huss-Danell, K. 2009. Long-term effects of plant diversity and composition on soil nematode communities in model grasslands. Ecology 90(1):90–99.PubMedCrossRefGoogle Scholar
  123. Von Lengerken H. 1929. The salt beetle of the North- and East sea coast with consideration of the neighbouring seas and the Mediterranean, the Black and the Caspian Sea - An ecological biological geographical study. Zeitschrift Fur Wissenschaftliche Zoologie 135(1/2):1–162.Google Scholar
  124. Walker, T. S., Bais, H. P., Grotewold, E., and Vivanco, J. M. 2003. Root exudation and rhizosphere biology. Plant Physiol. 132(1):44–51.PubMedCrossRefGoogle Scholar
  125. Wang, C. L., Bruening, G., and Williamson, V. M. 2009. Determination of preferred pH for root-knot nematode aggregation using Pluronic F-127 Gel. J. Chem. Ecol. 35(10):1242–1251.PubMedCrossRefGoogle Scholar
  126. Ward, S. 1978. Nematode chemotaxis and chemoreceptors, pp. 143–168, in G. L. Hazelbauer (ed.), Taxis and Behavior (Receptors and Recognition). Chapman and Hall, London.Google Scholar
  127. Wardle, D. A. 2002. Communities and Ecosystems: Linking the Aboveground and Belowgroound Components. Princeton University Press, Princeton, NJ.Google Scholar
  128. Whittaker, J. B. 2003. Root–animal interaction, pp. 363–385, in H. de Kroon and E. J. W. Wisser (eds.), Root Ecology. Springer, Berlin Heidelberg New York.Google Scholar
  129. Wuyts, N., Lognay, G., Verscheure, M., Marlier, M., De Waele, D., and Swennen, R. 2007. Potential physical and chemical barriers to infection by the burrowing nematode Radopholus similis in roots of susceptible and resistant banana (Musa spp.). Plant Pathol. 56(5):878–890.CrossRefGoogle Scholar
  130. WYSS, U. 2002. Feeding behaviour of plant-parasitic nematodes, pp. 369–387, in D. L. Lee (ed.), The Biology of Nematodes. Taylor & Francis Inc., New York, NY, USA.Google Scholar
  131. Yeates, G. W. 1999. Effects of plants on nematode community structure. Annu. Rev. Phytopathol. 37(1):127–149.PubMedCrossRefGoogle Scholar
  132. Yeates, G. W., Ferris, H., Moens, T., and Van Der Putten, W. H. 2009. Role of nematodes in ecosystems, pp. 1–44, in M. J. Wilson and T. Kakouli-Duarte (eds.), Nematodes as Environmental Indicators. CAB International, Walingford, UK.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Sergio Rasmann
    • 1
    Email author
  • Jared Gregory Ali
    • 2
  • Johannes Helder
    • 3
  • Wim H. van der Putten
    • 3
    • 4
  1. 1.Department of Ecology and EvolutionUNIL Sorge, Le Biophore, University of LausanneLausanneSwitzerland
  2. 2.Department of Ecology and Evolutionary BiologyCornell UniversityIthacaUSA
  3. 3.Laboratory of NematologyWageningen UniversityWageningenthe Netherlands
  4. 4.Department of Terrestrial EcologyNetherlands Institute of Ecology NIOO-KNAWWageningenthe Netherlands

Personalised recommendations