Journal of Chemical Ecology

, Volume 38, Issue 5, pp 538–546 | Cite as

Flavonoid Metabolites in the Hemolymph of European Pine Sawfly (Neodiprion sertifer) Larvae

  • Matti Vihakas
  • Petri Tähtinen
  • Vladimir Ossipov
  • Juha-Pekka Salminen
Article

Abstract

Flavonoids in the hemolymph of European pine sawfly (Neodiprion sertifer) larvae that were feeding on Pinus sylvestris needles were identified. HPLC–ESI–MS analysis revealed that the main components in the hemolymph were flavonol di- and triglucosides and a catechin monoglucoside. These compounds were isolated from the larval hemolymph and their structures were established by HPLC–MS, GC–MS, and NMR spectroscopy. The isolated flavonoids were identified as (+)-catechin 7-O-β-glucoside, isorhamnetin 3,7,4′-tri-O-β-glucoside, kaempferol 3,7,4′-tri-O-β-glucoside, and quercetin 3,7,4′-tri-O-β-glucoside. The combined concentration of these four compounds in the hemolymph was 3.7 mg/ml. None of these compounds was present in the needles of P. sylvestris. Therefore, we propose that the flavonoid glucosides were produced by the larvae from flavonoid monoglucosides and (+)-catechin obtained from the pine needles.

Keywords

European pine sawfly Scots pine Hemolymph Flavonoid glycosides Hymenoptera Diprionidae 

Supplementary material

10886_2012_113_MOESM1_ESM.doc (122 kb)
ESM 1(DOC 122 kb)

References

  1. Abd El-Razek, M. H. 2007. NMR assignments of four catechin epimers. Asian J. Chem. 19:4867–4872.Google Scholar
  2. Auger, M. A., Jay-Allemand, C., Bastien, C., and Geri, C. 1994. Quantitative variations of taxifolin and its glucoside in Pinus sylvestris needles consumed by Diprion pini larvae. Ann. Sci. For. 51:135–146.CrossRefGoogle Scholar
  3. Benavides, A., Montoro, P., Bassarello, C., Piacente, S., and Pizza, C. 2006. Catechin derivatives in Jatropha macrantha stems: Characterisation and LC/ESI/MS/MS quali–quantitative analysis. J. Pharm. Biomed. Anal. 40:639–647.PubMedCrossRefGoogle Scholar
  4. Bernards, M. A. 2010. Plant natural products: A primer. Can. J. Zool. 88:601–614.CrossRefGoogle Scholar
  5. Björkman, C. and Larsson, S. 1991. Pine sawfly defence and variation in host plant resin acids: A trade-off with growth. Ecol. Entomol. 16:283–289.CrossRefGoogle Scholar
  6. Boevé, J.-L. and Müller, C. 2005. Defence effectiveness of easy bleeding sawfly larvae towards invertebrate and avian predators. Chemoecology 15:51–58.CrossRefGoogle Scholar
  7. Boevé, J.-L. and Schaffner, U. 2003. Why does the larval integument of some sawfly species disrupt so easily? The Harmful Hemolymph Hypothesis. Oecologia 134:104–111.PubMedCrossRefGoogle Scholar
  8. Bowers, M. D., Boockvar, K., and Collinge, S. K. 1993. Iridoid glycosides of Chelone glabra (Scrophulariaceae) and their sequestration by larvae of a sawfly, Tenthredo grandis (Tenthredinidae). J. Chem. Ecol. 19:815–823.CrossRefGoogle Scholar
  9. Bubb, W. A. 2003. NMR spectroscopy in the study of carbohydrates: Characterizing the structural complexity. Conc. Magn. Reson. 19A:1–19.CrossRefGoogle Scholar
  10. Carmona, M., Sánchez, A. M., Ferreres, F., Zalacain, A., Tomás-Barberán, F. A., and Alonso, G. L. 2007. Identification of the flavonoid fraction in saffron spice by LC/DAD/MS/MS: Comparative study of samples from different geographical origins. Food Chem. 100:445–450.CrossRefGoogle Scholar
  11. Crockett, S. L. and Boevé, J.-L. 2011. Flavonoid glycosides and naphthodianthrones in the sawfly Tenthredo zonula and its host-plants, Hypericum perforatum and H. hirsutum. J. Chem. Ecol. 37:943–952.PubMedCrossRefGoogle Scholar
  12. Eisner, T., Johnessee, J. S., Carrel, J., Hendry, L. B., and Meinwald, J. 1974. Defensive use by an insect of a plant resin. Science 184:996–999.PubMedCrossRefGoogle Scholar
  13. Foo, L. Y. and Karchesy, J. J. 1989. Polyphenolic glycosides from douglas fir inner bark. Phytochemistry 28:1237–1240.CrossRefGoogle Scholar
  14. Fossen, T. and Andersen, Ø. M. 2006. Spectroscopic techniques applied to flavonoids, pp. 37–142, in Ø. M. Andersen and K. R. Markham (eds.), Flavonoids: Chemistry, Biochemistry, and Applications. CRC Press, Taylor & Francis Group, Boca Raton, USA.Google Scholar
  15. Fossen, T., Pedersen, A. T., and Andersen, Ø. M. 1997. Flavonoids from red onion (Allium Cepa). Phytochemistry 47:281–285.CrossRefGoogle Scholar
  16. Friedrich, W. and Galensa, R. 2002. Identification of a new flavanol glucoside from barley (Hordeum vulgare L.) and malt. Eur. Food Res. Technol. 214:388–393.Google Scholar
  17. Grindley, T. B. 2008. Structure and conformation of carbohydrates, pp. 3–55, in B. O. Fraser-Reid, K. Tatsuta, and J. Thiem (eds.), Glycoscience: Chemistry and Chemical Biology, 2nd ed. Springer, Berlin, Germany.CrossRefGoogle Scholar
  18. Halket, J., Przyborowska, A., Stein, S., Down, S., and Chalmers, R. 1999. Deconvolution gas chromatography/mass spectrometry of urinary organic acid—potential for pattern recognition and automated identification of metabolite disorders. Rapid Commun. Mass Spectr. 13:279–284.CrossRefGoogle Scholar
  19. Harborne, J. B. 2001. Twenty-five years of chemical ecology. Nat. Prod. Rep. 18:361–379.PubMedCrossRefGoogle Scholar
  20. Hatano, T. and Hemingway, R. W. 1997. Conformational isomerism of phenolic procyanidins: Preferred conformations in organic solvents and water. J. Chem. Soc. Perkin Trans. 2:1035–1043.Google Scholar
  21. Kanerva, S., Kitunen, V., Loponen, J., and Smolander, A. 2008. Phenolic compounds and terpenes in soil organic horizon layers under silver birch, Norway spruce and Scots Pine. Biol. Fertil. Soils 44:547–556.CrossRefGoogle Scholar
  22. Kang, Y.-J. and Howard, L. R. 2010. Phenolic composition and antioxidant activities of different solvent extracts from pine needles in Pinus species. J. Food Sci. Nutr. 15:36–43.CrossRefGoogle Scholar
  23. Karonen, M., Loponen, J., Ossipov, V., and Pihlaja, K. 2004. Analysis of procyanidins in pine bark with reversed-phase and normal-phase high-performance liquid chromatography-electrospray ionization mass spectrometry. Anal. Chim. Acta 522:105–112.CrossRefGoogle Scholar
  24. Korver, O. and Wilkins, C. K. 1971. Circular dichroism spectra of flavanols. Tetrahedron 27:5459–5465.CrossRefGoogle Scholar
  25. Laatikainen, R., Niemitz, M., Weber, U., Sundelin, J., Hassinen, T., and Vepsäläinen, J. 1996. General strategies for total-line-shape type spectral analysis of NMR spectra using integral transform iterator. J. Magn. Reson. A120:1–10.Google Scholar
  26. Lahtinen, M., Kapari, L., Ossipov, V., Salminen, J.-P., Haukioja, E., and Pihlaja, K. 2005. Biochemical transformation of birch leaf phenolics in larvae of six species of sawflies. Chemoecology 15:153–159.CrossRefGoogle Scholar
  27. Langheim, J. H. 1994. Higher plant terpenoids: A phytocentric overview of their ecological roles. J. Chem. Ecol. 20:1223–1280.CrossRefGoogle Scholar
  28. Larsson, S. and Tenow, O. 1984. Areal distribution of a Neodiprion sertifer (Hym., Diprionidae) outbreak on scots pine as related to stand condition. Holarctic Ecol. 7:81–90.Google Scholar
  29. Larsson, S., Björkman, C., and Gref, R. 1986. Responses of Neodiprion sertifer (Hym., Diprionidae) larvae to variation in needle resin acid concentration in Scots Pine. Oecologia 70:77–84.CrossRefGoogle Scholar
  30. Larsson, S., Lundgren, L., Ohmart, C. P., and Gref, R. 1992. Weak responses of pine sawfly larvae to high needle flavonoid concentrations in scots pine. J. Chem. Ecol. 18:271–282.CrossRefGoogle Scholar
  31. Larsson, S., Ekbom, B., and Björkman, C. 2000. Influence of plant quality on pine sawfly population dynamics. Oikos 89:440–450.CrossRefGoogle Scholar
  32. Lavola, A., Aphalo, P. J., Lahti, M., and Julkunen-Tiitto, R. 2003. Nutrient availability and the effect of increasing UV-B radiation on secondary plant compounds in Scots Pine. Environ. Exp. Bot. 49:49–60.CrossRefGoogle Scholar
  33. Maron, J. L., Harrison, S., and Greaves, M. 2001. Origin of an insect outbreak: Escape in space or time from natural enemies? Oecologia 126:595–602.CrossRefGoogle Scholar
  34. Müller, C., Agerbirk, N., Olsen, C. E., Boevé, J.-L., Schaffner, U., and Brakefield, P. M. 2001. Sequestration of Host plant glucosinolates in the defensive hemolymph of the sawfly Athalia rosae. J. Chem. Ecol. 27:2505–2516.PubMedCrossRefGoogle Scholar
  35. Müller, C., Boevé, J.-L., and Brakefield, P. M. 2002. Host plant derived feeding deterrence towards ants in the turnip sawfly Athalia rosae. Entomol. Exp. Appl. 104:153–157.CrossRefGoogle Scholar
  36. Mumm, R. and Hilker, M. 2006. Direct and indirect chemical defence of pine against folivorous insects. Trends Plant Sci. 11:351–358.PubMedCrossRefGoogle Scholar
  37. Karonen, M. 2007. Plant proanthocyanidins. characterization and quantification by degradation methods, HPLC-DAD/ESI-MS and NMR. Annales Universitatis Turkuensis AI 374, 53 p. PhD dissertation. University of Turku, Turku, Finland.Google Scholar
  38. Oleszek, W., Stochmal, A., Karolewski, P., Simonet, A. M., Macias, F. A., and Tava, A. 2002. Flavonoids from Pinus sylvestris needles and their variation in trees of different origin grown for nearly a century at the same Area. Biochem. Syst. Ecol. 30:1011–1022.CrossRefGoogle Scholar
  39. Opitz, S. E. W. and Müller, C. 2009. Plant chemistry and insect sequestration. Chemoecology 19:117–154.CrossRefGoogle Scholar
  40. Opitz, S. E. W., Jensen, S. R., and Müller, C. 2010. Sequestration of glucosinolates and iridoid glucsides in sawfly species of the genus Athalia and their role in defense against ants. J. Chem. Ecol. 36:148–157.PubMedCrossRefGoogle Scholar
  41. Prieto, J. M., Schaffner, U., Barker, A., Braca, A., Siciliano, T., and Boevé, J.-L. 2007. Sequestration of furostanol saponins by Monophadnus sawfly larvae. J. Chem. Ecol. 33:513–524.PubMedCrossRefGoogle Scholar
  42. Prop, N. 1960. Protection against birds and parasites in some species of Tenthredinid larvae. Arch. Neerl. Zool. 13:380–447.CrossRefGoogle Scholar
  43. Raab, T., Barron, D., Arce Vera, F., Crespy, V., Oliveira, M., and Williamson, G. 2010. Catechin glucosides: Occurrence, synthesis and stability. J. Agric. Food Chem. 58:2138–2149.PubMedCrossRefGoogle Scholar
  44. Roitto, M., Markkola, A., Julkunen-Tiitto, R., Sarjala, T., Rautio, P., Kuikka, K., and Tuomi, J. 2003. Defoliation-induced responses in peroxidases, phenolics, and polyamines in Scots pine (Pinus sylvestris L.) needles. J. Chem. Ecol. 29:1905–1918.PubMedCrossRefGoogle Scholar
  45. Roitto, M., Rautio, P., Julkunen-Tiitto, R., Kukkola, E., and Huttunen, S. 2005. Changes in the concentrations of phenolics and photosynthates in Scots pine (Pinus sylvestris L.) seedlings exposed to nickel and copper. Environ. Pollut. 137:603–609.PubMedCrossRefGoogle Scholar
  46. Roslund, M. U., Tähtinen, P., Niemitz, M., and Sjöholm, R. 2008. Complete assignments of the 1H and 13C chemical shifts and JH, H coupling constants in NMR spectra of D-glucopyranose and all D-glucopyranosyl- D-glucopyranosides. Carbohydr. Res. 343:101–112.PubMedCrossRefGoogle Scholar
  47. Schaffner, U., Boevé, J.-L., Gfeller, H., and Schlunegger, U. P. 1994. Sequestration of Veratrum alkaloids by specialist Rhadinoceraea nodicornis Konow (Hymenoptera, Tenthredinidae) and its ecoethological implications. J. Chem. Ecol. 20:3233–3250.CrossRefGoogle Scholar
  48. Schmidt, S., Zietz, M., Schreiner, M., Rohn, S., Kroh, L. W., and Krumbein, A. 2010. Identification of complex, naturally occurring flavonoid glycosides in kale (Brassica oleracea var. sabellica) by high-performance liquid chromatography diode-array detection/electrospray ionization multi-stage mass spectrometry. Rapid Commun. Mass Spectrom. 24:2009–2022.PubMedCrossRefGoogle Scholar
  49. Schopf, R., Mignat, C., and Hedden, P. 1982. As to the food quality of spruce needles for forest damaging insects. 18. Resorption of secondary plant metabolites by the sawfly Gilpinia hercyniae Htg (Hym., Diprionidae). Z. Angew. Entomol. 93:244–257.CrossRefGoogle Scholar
  50. Semiz, G., Heijari, J., Isik, K., and Holopainen, J. K. 2007. Variation in needle terpenoids among Pinus sylvestris L. (Pinaceae) provenances from Turkey. Biochem. Syst. Ecol. 35:652–661.CrossRefGoogle Scholar
  51. Shirley, B. W. 1996. Flavonoid biosynthesis: ‘New’ functions for an ‘old’ pathway. Trends Plant Sci. 1:377–382.Google Scholar
  52. Sillén-Tullberg, B. 1990. Do predators avoid groups of aposematic prey? An experimental test. Anim. Behav. 40:856–860.CrossRefGoogle Scholar
  53. Slade, D., Ferreira, D., and Marais, J. P. J. 2005. Circular dichroism, a powerful tool for the assessment of absolute configuration of flavanoids. Phytochemistry 66:2177–2215.PubMedCrossRefGoogle Scholar
  54. Tvaroska, I. and Taravel, F. R. 1995. Carbon-proton coupling constants in the conformational analysis of sugar molecules. Adv. Carbohydr. Chem. Biochem. 51:15–62.PubMedCrossRefGoogle Scholar
  55. Vihakas, M., Kapari, L., and Salminen, J.-P. 2010. New types of flavonol oligoglycosides accumulate in the hemolymph of birch-feeding sawfly larvae. J. Chem. Ecol. 36:864–872.PubMedCrossRefGoogle Scholar
  56. Watanabe, M. and Ayugase, J. 2009. Chiral separation of catechins in buckwheat groats and the effects of phenolic compounds in mice subjected to restraint stress. J. Agric. Food Chem. 57:6438–6442.PubMedCrossRefGoogle Scholar
  57. Wink, M. 2003. Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Matti Vihakas
    • 1
  • Petri Tähtinen
    • 1
  • Vladimir Ossipov
    • 1
  • Juha-Pekka Salminen
    • 1
  1. 1.Laboratory of Organic Chemistry and Chemical Biology, Department of ChemistryUniversity of TurkuTurkuFinland

Personalised recommendations