Journal of Chemical Ecology

, Volume 38, Issue 4, pp 427–436 | Cite as

Identification and Characterization of Two General Odorant Binding Protein Genes from the Oriental Fruit Moth, Grapholita molesta (Busck)

  • Guo-Hui Zhang
  • Yi-Ping Li
  • Xiang-Li Xu
  • Hao Chen
  • Jun-Xiang Wu


Two novel general odorant-binding protein (GOBP) cDNAs (GmolGOBP1 and GmolGOBP2) were cloned and characterized from female antennal tissue of the oriental fruit moth, Grapholita molesta. We focused our investigation on this olfactory protein family by using reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends-PCR (RACE-PCR). The full-length open reading frames of GmolGOBP1 and GmolGOBP2 were 492 and 483 nucleotides long, which encode 164 and 161 amino acid residue peptides, respectively. Protein signature analyses revealed that they each contained six conserved cysteines with an N-terminal signal sequence of 20 amino acids. The alignment of the two deduced protein sequences with other Lepidoptera GOBPs showed high sequence similarity (70–80 %) with other full-length sequences from GenBank. Sequence similarity between the two GOBPs was only 48 %, suggesting that the two proteins belong to different classes of lepidopteran GOBPs. RT-PCR analysis revealed that the two GOBP genes were expressed only in antennae of both sexes. Real-time PCR analysis further indicated that the transcript level of GmolGOBP1 was higher in males than in females, whereas the transcript level of GmolGOBP2 was higher in females than in males. Temporally, the two GOBP genes were expressed during the complete photoperiod (15L:9D). The highest transcript levels of GmolGOBP1 in both sexes and GmolGOBP2 in females were detected at the end of photophase and during scotophase. The expression of GmolGOBP2 in males remained at similar levels during the complete photoperiod. Based on these results, the possible physiological functions of GmolGOBPs are discussed.


Agarose gel electrophoresis Grapholita molesta Lepidoptera Molecular cloning mRNA expression Rapid amplification of cDNA ends-P polymerase chain reaction (RACE-PCR) Real-time polymerase chain reaction (PCR) Reverse transcription-polymerase chain reaction (RT-PCR) Sequence analysis Tortricidae Insect pest 



We are grateful to Dr Jian-Min Yan (University of Waterloo, Canada) for valuable advice and comments on the manuscript. This work was supported by the Special Fund for Agro-scientific Research in the Public Interest (No. 20110324).

Supplementary material

10886_2012_102_MOESM1_ESM.doc (62 kb)
Supplemental Data Fig. S1 Plot of log10cDNA dilution versus (CTGOBP- CTActin). (DOC 62 kb)
10886_2012_102_MOESM2_ESM.doc (43 kb)
Supplemental Data Table 1 (DOC 43 kb)
10886_2012_102_MOESM3_ESM.doc (221 kb)
Supplemental Data Table 2 (DOC 221 kb)


  1. Ban, L., Scaloni, A., D’Ambrosio, C., Zhang, L., Yahn, Y., and Pelosi, P. 2003. Biochemical characterization and bacterial expression of an odorant-binding protein from Locusta migratoria. Cell Mol Life Sci 60:390–400.PubMedCrossRefGoogle Scholar
  2. Biessmann, H., Walter, M. F., Dimitratos, S., and Woods, D. 2002. Isolation of cDNA clones encoding putative odorant binding proteins from the antennae of the malaria-transmitting mosquito. Anopheles gambiae. Insect Mol Biol 11:123–132.PubMedCrossRefGoogle Scholar
  3. Biessmann, H., Andronopoulou, E., Biessmann, M. R., Douris, V., Dimitratos, S. D., Eliopoulos, E., Guerin, P. M., Iatrou, K., Justice, R. W., Kröber, T., et al. 2010. The Anopheles gambiae odorant binding protein 1 (AgamOBP1) mediates indole recognition in the antennae of female mosquitoes. PLoS ONE 5:e9471.PubMedCrossRefGoogle Scholar
  4. Calvello, M., Guerra, N., Brandazza, A., D’Ambrosio, C., Scaloni, A., Dani, F. R., Turillazzi, S., and Pelosi, P. 2003. Soluble proteins of chemical communication in the social wasp Polistes dominulus. Cell. Mol. Life Sci. 60:1933–1943.PubMedCrossRefGoogle Scholar
  5. Calvello, M., Brandazzaa, A., Navarrinia, A., Danib, F. R., Turillazzic, S., Feliciolid, A., and Pelosi, P. 2005. Expression of odorant-binding proteins and chemosensory proteins in some Hymenoptera. Insect Biochem Mol Biol 35:297–307.PubMedCrossRefGoogle Scholar
  6. Dorn, S., Hughes, J., Molinari, F., and Cravedi, P. 2001. Cydia molesta and Cydia pomonella: comparison of adult behavior. IOBC-WPRS Bulletin 24:133–137.Google Scholar
  7. Du, J., Wang, Y. R., and Wu, J. X. 2010. Effect of four different artificial diets on development and reproduction of Grapholita molesta (Lepidoptera: Tortricidae). J Shanxi Agric Univ 30:229–231.Google Scholar
  8. Feng, I. and Prestwich, G. D. 1997. Expression and characterization of the lepidopteran general odorant binding protein. Insect Biochem Mol Biol 27:405–412.PubMedCrossRefGoogle Scholar
  9. Galindo, K. and Smith, D. P. 2001. A large family of divergent Drosophila odorant-binding proteins expressed in gustatory and olfactory sensilla. Genetics 159:1059–1072.PubMedGoogle Scholar
  10. Gentry, C. R., Beroza, M., and Blythe, J. L. 1975. Pecan bud moth: Captures in Georgia in traps baited with the pheromone of the oriental fruit moth. Environ Entomol 4:227–231.Google Scholar
  11. George, J. A. 1965. Sex pheromone of the oriental fruit moth, Grapholita molesta (Busk). Can Entomol 93:1002–1007.CrossRefGoogle Scholar
  12. Gong, Z.-J., Zhou, W.-W., Yu, H.-Z., Mao, C.-G., Zhang, C.-X., Cheng, J.-A., and Zhu, Z.-R. 2009. Cloning, expression and functional analysis of a general odorant-binding protein 2 gene of the rice striped stem borer, Chilo suppressalis (Walker) (Lepidoptera: Pyralidae). Insect Mol Biol 18:405–417.PubMedCrossRefGoogle Scholar
  13. Gu, S. H., Wang, S. P., Zhang, X. Y., Wu, K. M., Guo, Y. Y., Zhou, J. J., and Zhang, Y. J. 2011. Identification and tissue distribution of odorant binding protein genes in the Lucerne plant bug Adelphocoris lineolatus (Goeze). Insect Biochem Mol Biol 41:254–263.PubMedCrossRefGoogle Scholar
  14. Hughes, J. and Dorn, S. 2002. Sexual differences in the flight performance of the oriental fruit moth, Cydia molesta. Entomol Exp Appl 103:171–182.CrossRefGoogle Scholar
  15. Ishida, Y., Chiang, V. P., Haverty, M. I., and Leal, W. S. 2002. Odorant-binding proteins from a primitive termite. J Chem Ecol 28:1887–1893.PubMedCrossRefGoogle Scholar
  16. Jacquin-Joly, E., Bohbot, J., François, M.-C., Cain, A. H., and Nagnan-Le, M. P. 2000. Characterization of the general odorant-binding protein 2 in the molecular coding of odorants in Mamestra brassicae. Eur J Biochem 267:6708–6714.PubMedCrossRefGoogle Scholar
  17. Kaissling, K. E. 2001. Olfactory perireceptor and receptor events in moths: a kinetic model. Chem Senses 26:125–150.PubMedCrossRefGoogle Scholar
  18. Konstantopoulou, M. A., Pratsinis, H., Kletsas, D., and Mazomenos, B. E. 2005. Pheromone-binding protein and general odorant-binding protein of Sesamia nonagrioides: sex- and diel-dependent expression. Entomol Exp Appl 119:129–136.CrossRefGoogle Scholar
  19. Krieger, J. and Breer, H. 1999. Olfactory reception in invertebrates. Science 286:720–723.PubMedCrossRefGoogle Scholar
  20. Kristensen, N. P., Scoble, M. J., and Karsholt, O. 2007. Lepidoptera phylogeny and systematics: the state of inventorying moth and butterfly diversity. Zootaxa 1668:699–747.Google Scholar
  21. Leal, W. S. 2005. Pheromone reception. Top Curr Chem 240:1–36.Google Scholar
  22. Leal, W. S., Nikonova, L., and Peng, G. 1999. Disulfide structure of the pheromone binding protein from the silkworm moth, Bombyx mori. FEBS Lett 464:85–90.PubMedCrossRefGoogle Scholar
  23. Li, Z. X., Pickett, J. A., Field, L. M., and Zhou, J. J. 2005. Identification and expression of odorant-binding proteins of the malaria carrying mosquitoes Anopheles gambiae and Anopheles arabiensis. Arch Ins Biochem Physiol 58:175–189.CrossRefGoogle Scholar
  24. Liu, Z., Vidal, D. M., Syed, Z., Ishida, Y., and Leal, W. S. 2010. Pheromone binding to general odorant-binding proteins from the navel orangeworm. J Chem Ecol 36:787–794.PubMedCrossRefGoogle Scholar
  25. Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408.PubMedCrossRefGoogle Scholar
  26. Lu, D., Li, X., Liu, X., and Zhang, Q. 2007. Identification and molecular cloning of putative odorant-binding proteins and chemosensory protein from the bethylid wasp, Scleroderma guani Xiao et Wu. J Chem Ecol 33:1359–1375.PubMedCrossRefGoogle Scholar
  27. Maibèche-Coisne, M., Longhi, S., Jacquin-Joly, E., Brunel, C., Egloff, M. P., Gastinel, L., Cambillau, C., Tegoni, M., and Nagnan-Le Meillour, P. 1998. Molecular cloning and bacterial expression of a general odorant-binding protein from the cabbage armyworm, Mamestra brassicae. Eur J Biochem 258:768–774.PubMedCrossRefGoogle Scholar
  28. Mittapalli, O., Wise, I. L., and Shukle, R. H. 2006. Characterization of a serine carboxypeptidase in the salivary glands and fat body of the orange wheat blossom midge, Sitodiplosis mosellana (Diptera: Cecidomyiidae). Insect Biochem Mol Biol 36:154–160.PubMedCrossRefGoogle Scholar
  29. Nagnan-Le Meillour, P., Francois, M. C., and Jacquin-Joly, E. 2004. Identification and molecular cloning of putative odorant-binding proteins from the American palm weevil, Rhynchophorus palmarum L. J Chem Ecol 30:1213–1223.PubMedCrossRefGoogle Scholar
  30. Ozaki, M., Morisaki, K., Idei, W., Ozaki, K., and Tokunaga, F. 1995. A putative lipophilic stimulant carrier protein commonly found in the taste and olfactory systems. A unique member of the pheromone-binding protein superfamily. Eur J Biochem 230:298–308.PubMedCrossRefGoogle Scholar
  31. Pelletier, J., Guidolin, A., Syed, Z., Cornel, A. J., and Leal, W. S. 2010. Knockdown of a mosquito odorant-binding protein involved in the sensitive detection of oviposition attractants. J Chem Ecol 36:245–248.PubMedCrossRefGoogle Scholar
  32. Pelosi, P. 1996. Perireceptor events in olfaction. J Neurobiol 30:3–9.PubMedCrossRefGoogle Scholar
  33. Pelosi, P., Zhou, J. J., Ban, L. P., and Calvello, M. 2006. Soluble proteins in insect chemical communication. Cell Mol Life Sci 63:1658–1676.PubMedCrossRefGoogle Scholar
  34. Picimbon, J. F. and Gadenne, C. 2002. Evolution of noctuid pheromone binding proteins: identification of PBP in the black cutworm moth, Agrotis ipsilon. Insect Biochem Mol Biol 32:839–846.PubMedCrossRefGoogle Scholar
  35. Picimbon, J. F., Dietrich, K., Krieger, J., and Breer, H. 2001. Identity and expression pattern of chemosensory proteins in Heliothis virescens (Lepidoptera, Noctuidae). Insect Biochem Mol Biol 31:1173–1181.PubMedCrossRefGoogle Scholar
  36. Prestwich, G. D., Du, G., and Laforest, S. 1995. How is pheromone specificity encoded in proteins? Chem Senses 20:461–469.PubMedCrossRefGoogle Scholar
  37. Rothschild, G. H. L. and Vickers, R. A. 1991. The biology, ecology and control of Oriental fruit moth, pp. 389–412, in L. P. S. Van Der Geest and H. H. Evenhuis (eds.), Tortricid Pests: Their Biology, Natural Enemies and Control. World Crop Pests. Elsevier, Amsterdam.Google Scholar
  38. Scaloni, A., Monti, M., Angeli, S., and Pelosi, P. 1999. Structural analysis and disulfide bridge pairing of two odorant-binding proteins from Bombyx mori. Biochem Biophys Res Commun 266:386–391.PubMedCrossRefGoogle Scholar
  39. Schneider, D., Schulz, S., Priesner, E., Ziesmann, J., and Francke, W. 1998. Autodetection and chemistry of female and male pheromone in both sexes of the tiger moth Panaxia quadripunctaria. J Comp Physiol 182:153–161.CrossRefGoogle Scholar
  40. Steinbrecht, R. A. 1993. Freeze-substitution for morphological and immunocytochemical studies in insects. Micros Res Tech 24:488–504.CrossRefGoogle Scholar
  41. Steinbrecht, R. A., Laue, M., and Ziegelberger, G. 1995. Immunocytochemical of pheromone-binding protein and general odorant-binding protein in olfactory sensilla of the silk moth Antheraea and Bombyx. Cell Tissue Res 282:203–217.CrossRefGoogle Scholar
  42. Steiner, L. F. and Yetter, W. P. 1933. Second report on the efficiency of bait traps for the oriental fruit moth as indicated by the release and capture of marked moths. J Econ Entomol 26:774–788.Google Scholar
  43. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. 1997. The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882.CrossRefGoogle Scholar
  44. Vogt, R. G. and Lerner, M. R. 1989. Two groups of odorant binding proteins in insects suggest specific and general olfactory pathways. Neurosci Abstr 15:1290–1296.Google Scholar
  45. Vogt, R. G. and Riddiford, L. M. 1981. Pheromone binding and inactivation by moth antennae. Nature 293:161–163.PubMedCrossRefGoogle Scholar
  46. Vogt, R. G., Prestwich, G. D., and Lerner, M. R. 1991a. Odorant-binding protein subfamilies associate with distinct classes of olfactory receptor neurons in insects. J Neurobiol 22:74–84.PubMedCrossRefGoogle Scholar
  47. Vogt, R. G., Robert, R., and Lerner, M. R. 1991b. Molecular cloning and sequencing of general odorant-binding proteins GOBP1 and GOBP2 from the tobacco hawk moth Manduca sexta: Comparisons with other insect OBPs and their signal peptides. J Neurosci 17:2972–2984.Google Scholar
  48. Vogt, R. G., Callahan, F. E., Rogers, M. E., and Dickens, J. C. 1999. Odorant binding protein diversity and distribution among the insect orders, as indicated by LAP, an OBP-related protein of the true bug Lygus lineolaris (Hemiptera, Heteroptera). Chem Senses 24:481–495.PubMedCrossRefGoogle Scholar
  49. Vogt, R. G., Rogers, M. E., Franco, M. D., and Sun, M. 2002. A comparative study of odorant binding protein genes: differential expression of the PBP1-GOBP2 gene cluster in Manduca sexta (Lepidoptera) and the organization of OBP genes in Drosophila melanogaster (Diptera). J Exp Biol 205:719–744.PubMedGoogle Scholar
  50. Wang, G. R., Wu, K. M., and Guo, Y. Y. 2003. Cloning, expression and immunocytochemical localization of a general odorant-binding protein gene from Helicoverpa armigera (Hübner). Insect Biochem Mol Biol 33:115–124.PubMedCrossRefGoogle Scholar
  51. Xiu, W. M. and Dong, S. L. 2007. Molecular characterization of two pheromone binding proteins and quantitative analysis of their expression in the beet armyworm, Spodoptera exigua Hübner. J Chem Ecol 33:947–961.PubMedCrossRefGoogle Scholar
  52. Xu, P., Atkinson, R., Jones, D. N., and Smith, D. P. 2005. Drosophila OBP LUSH is required for activity of pheromone-sensitive neurons. Neurons 45:193–200.CrossRefGoogle Scholar
  53. Zhang, T.-T., Gu, S.-H., Wu, K.-M., Zhang, Y.-J., and Guo, Y.-Y. 2011. Construction and analysis of cDNA libraries from the antennae of male and female cotton bollworms Helicoverpa armigera (Hübner) and expression analysis of putative odorant-binding protein genes. Biochem Biophys Res Commun 407:393–399.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Guo-Hui Zhang
    • 1
  • Yi-Ping Li
    • 1
  • Xiang-Li Xu
    • 1
  • Hao Chen
    • 1
  • Jun-Xiang Wu
    • 1
  1. 1.Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education; Key Laboratory of Applied EntomologyNorthwest A & F University; and College of Plant Protection, Northwest A & F UniversityYanglingPeople’s Republic of China

Personalised recommendations