Journal of Chemical Ecology

, Volume 38, Issue 3, pp 262–271 | Cite as

The Social Integration of a Myrmecophilous Spider Does Not Depend Exclusively on Chemical Mimicry

  • Christoph von Beeren
  • Rosli Hashim
  • Volker Witte


Numerous animals have evolved effective mechanisms to integrate into and exploit ant societies. Chemical integration strategies are particularly widespread among ant symbionts (myrmecophiles), probably because social insect nestmate recognition is predominantly mediated by cuticular hydrocarbons (CHCs). The importance of an accurate chemical mimicry of host CHCs for social acceptance recently has been demonstrated in a myrmecophilous silverfish. In the present study, we investigated the role of chemical mimicry in the myrmecophilous spider Gamasomorpha maschwitzi that co-occurs in the same host, Leptogenys distinguenda, as the silverfish. To test whether spiders acquire mimetic CHCs from their host or not, we transferred a stable isotope-labeled hydrocarbon to the cuticle of workers and analyzed the adoption of this label by the spiders. We also isolated spiders from hosts in order to study whether this affects: 1) their chemical host resemblance, and 2) their social integration. If spiders acquired host CHCs, rather than biosynthesizing them, they would be expected to lose these compounds during isolation. Spiders acquired the labeled CHC from their host, suggesting that they also acquire mimetic CHCs, most likely through physical contact. Furthermore, isolated spiders lost considerable quantities of their CHCs, indicating that they do not biosynthesize them. However, spiders remained socially well integrated despite significantly reduced chemical host similarity. We conclude that G. maschwitzi depends less on chemical mimicry to avoid recognition and aggressive rejection than the silverfish previously studied, suggesting that the two myrmecophiles possess different adaptations to achieve social integration.


Acquired chemical mimicry Myrmecophile Social integration Cuticular hydrocarbons Malayatelura ponerophila 



We thank the behavioral ecology group at the LMU Munich for helpful comments on the manuscript, with special thanks to Sebastian Pohl and Andrew Bruce. Many thanks also to Sofia Lizon à l’Allemand, Max Kölbl, Magdalena Mair, and Deborah Schweinfest for assistance in the field. We are grateful for financial support from the DFG (Deutsche Forschungsgemeinschaft, project WI 2646/3).

Supplementary material

10886_2012_83_MOESM1_ESM.pdf (353 kb)
ESM 1 (PDF 353 kb)
10886_2012_83_MOESM2_ESM.avi (3 mb)
ESM 2 (AVI 3035 kb)


  1. Akino, T. 2008. Chemical strategies to deal with ants: a review of mimicry, camouflage, propaganda, and phytomimesis by ants (Hymenoptera:Formicidae) and other arthropods. Myrmecol. News 11:173–181 Google Scholar
  2. Allan, R. A., Capon, R. J., Brown, W.V., and Elgar, M.A. 2002. Mimicry of host cuticular hydrocarbons by salticid spider Cosmophasis bitaeniata that preys on larvae of tree ants Oecophylla smaragdina. J. Chem. Ecol. 28:835–848PubMedCrossRefGoogle Scholar
  3. Anderson, M. J., Gorley, R. N., and Clarke, K. R. 2008. PERMANOVA+ for PRIMER: Guide to software and statistical methods. PRIMER-E, Plymouth, UKGoogle Scholar
  4. Baer, B., Den Boer, S. P. A., Kronauer, D. J. C., Nash, D.R., and Boomsma, J. J. 2009. Fungus gardens of the leafcutter ant Atta colombica function as egg nurseries for the snake Leptodeira annulata. Insectes Soc. 56:289–291CrossRefGoogle Scholar
  5. Bagnères, A.-G., and Lorenzi, M. 2010. Chemical deception/mimicry using cuticular hydrocarbons. in: Blomquist GJ, Bagnères A-G (eds) Insect hydrocarbons: Biology, Biochemistry and Chemical ecology. Cambridge University Press, New York, USAGoogle Scholar
  6. Bates, H.W. 1862. Contributions to an insect fauna of the Amazon Valley. Lepidoptera: Heliconidae. Trans. Linn. Soc. 23:495–566CrossRefGoogle Scholar
  7. Bauer, S., Boehm, M., Witte, V., and Foitzik, S. 2010. An ant social parasite in-between two chemical disparate host species. Evol. Ecol. 24:317–332CrossRefGoogle Scholar
  8. Brower, L. P. 1988. Mimicry and the evolutionary process. Amer. Nat. 131: Supplement S1-S121CrossRefGoogle Scholar
  9. Ceccarelli, F. S. 2007. Contact between Myrmarache (Araneae: Salticidae) and ants. Bull. Br. Arachnol. Soc. 14:54–58Google Scholar
  10. Cushing, P. E. 1997. Myrmecomorphy and myrmecophily in spiders: a review. Florida Entomol. 80:165–193CrossRefGoogle Scholar
  11. Dettner, K. and Liepert, C. 1994. Chemical mimicry and camouflage. Annu. Rev. Entomol. 39:129–154 CrossRefGoogle Scholar
  12. Emery, C. 1887. Catalogo dello formiche esistenti nelle collezioni del Museo Civico. Gen Insect Fasc 118:1–124Google Scholar
  13. Fisher, R. A. 1927. On some objections to mimicry theory: statistical and genetic. Trans. Ent. Soc. London 75:269–278CrossRefGoogle Scholar
  14. Gotwald, W. H. Jr. 1995. Army Ants: The Biology of Social Predation. Cornell University Press, New YorkGoogle Scholar
  15. Hölldobler, B. and Carlin, N. F. 1989. Colony founding, queen control and worker reproduction in the ant Aphaenogaster (=Novomessor) cockerelli (Hymenoptera: Formicidae). Psyche 96:131–151CrossRefGoogle Scholar
  16. Hölldobler, B. and Wilson, E.O. 1990. The Ants. Harvard University Press, CambridgeGoogle Scholar
  17. Kistner, D. H. 1979. Social and evolutionary significance of social insect symbionts. pp 339–413 in: Hermann HR (ed) Social insects. Academic Press, New York.Google Scholar
  18. Kroiss, J., Schmitt, T., and Strohm, E. 2009. Low level of cuticular hydrocarbons in a parasitoid of a solitary digger wasp and its potential for concealment. J. Entomol. Sci. 12:9–16CrossRefGoogle Scholar
  19. Kronauer, D. J. C. 2009. Recent advances in army ant biology (Hymenoptera: Formicidae). Myrmecol. News 12:51–65Google Scholar
  20. Lambardi, D., Dani, F.R., Turillazzi, S., and Boomsma, J. J. 2007. Chemical mimicry in an incipient leaf-cutting ant social parasite. Behav. Ecol. Sociobiol. 61:843–851CrossRefGoogle Scholar
  21. Lenoir, A., D’ettorre, P., Errard, C., and Hefetz, A. 2001. Chemical ecology and social parasitism in ants. Annu. Rev. Entomol. 46:573–599PubMedCrossRefGoogle Scholar
  22. Lenoir, A., Malosse, C., and Yamaoka, R. 1997. Chemical mimicry between parasitic ants of the genus Formicoxenus and their host Myrmica (Hymenoptera, Formicidae). Biochem. Syst. Ecol. 25:379–389CrossRefGoogle Scholar
  23. Mendes, L., Von Beeren, C., and Witte, V. 2011. Malayatelura ponerophila - a new genus and species of silverfish (Zygentoma, Insecta) from Malaysia, living in Leptogenys army-ant colonies (Formicidae). Dtsch. Ent. Z. 58:193–200CrossRefGoogle Scholar
  24. Müller, J. 1878. Über die Vortheile der Mimikry bei Schmetterlingen. Zoolog. Anz. 1: 54–55Google Scholar
  25. Nash, D. R., Als, T. D., Maile, R., Jones, G. R., and Boomsma, J. J. 2008. A mosaic of chemical coevolution in a large blue butterfly. Science 319:88–90PubMedCrossRefGoogle Scholar
  26. Nash, D. R., and Boomsma, J. J. 2008. Communiction between hosts and social parasites. in: d'Ettorre P, Hughes DP (eds) Sociobiology of communication an interdisciplinary approach. Oxford University Press, New YorkGoogle Scholar
  27. Nelson, X. J. 2011. A predator’s perspective of the accuracy of ant mimicry in spiders. Psyche 2012; doi:10.1155/2012/168549Google Scholar
  28. Ruxton, G. D., Sheratt, T., and Speed, M. 2004. Avoiding Attack: The Evolutionary Ecology of Crypsis, Warning Signals and Mimicry. Oxford University Press, New YorkGoogle Scholar
  29. Steghaus-Kovac, S. 1994. Wanderjäger im Regenwald- Lebensstrategien im Vergleich: Ökologie und Verhalten südostasiatischer Ameisenarten der Gattung Leptogenys (Hymenoptera: Formicidae: Ponerinae). Dissertation, University Frankfurt, GermanyGoogle Scholar
  30. Steiger, S., Schmitt, T., and Schäfer, H. M. 2011. The origin and dynamic evolution of chemical information transfer. Proc. R. Soc. B. 278:970–979PubMedCrossRefGoogle Scholar
  31. Stein, S. E. 1999. An Integrated Method for Spectrum Extraction and Compound Identification from GC/MS Data. J. Am. Soc. Mass Spectrom. 10:770–781CrossRefGoogle Scholar
  32. Symonds, M. R. E. and Elgar, M. A. 2008. The evolution of pheromone diversity. Trends Ecol. Evol. 23:220–228PubMedCrossRefGoogle Scholar
  33. Tanner, C. J. and Adler, F. R. 2009. To fight or not to fight: context-dependent interspecific aggression in competing ants. Anim. Behav. 77:297–305CrossRefGoogle Scholar
  34. Van Zweden, J. S. and D’ettorre, P. 2010. Nestmate recognition in social insects and the role of hydrocarbons. pp 222–243 in: Blomquist GJ, Bagnères AG (eds) Insect hydrocarbons: Biology, Biochemistry and Chemical Ecology. Cambridge University Press, New York.CrossRefGoogle Scholar
  35. Vander Meer, R.K., Jouvenaz, D. P., and Wojcik, D. P. 1989. Chemical mimicry in a parasitoid (Hymenoptera: Eucharitidae) of fire ants (Hymenoptera: Formicidae). J. Chem. Ecol. 15:2247–2261CrossRefGoogle Scholar
  36. VANDER MEER, R.K. and WOJCIK, D. P. 1982. Chemical mimicry in the myrmecophilous beetle Myrmecaphodius excavaticollis. Science 218:806–808PubMedCrossRefGoogle Scholar
  37. Von Beeren, C., Maruyama, M., Hashim, R., and Witte, V. 2011a. Differential host defense against multiple parasites in ants. Evol. Ecol. 25:259–276CrossRefGoogle Scholar
  38. Von Beeren, C., Pohl, S., and Witte, V. 2012. On the use of adaptive resemblance terms in chemical ecology. Psyche, Article ID 635761, doi:10.1155/2012/635761Google Scholar
  39. Von Beeren, C., Schulz, S., Hashim, R., and Witte, V. 2011b. Acquisition of chemical recognition cues facilitates integration into ant societies. BMC Ecology 11:30PubMedCrossRefGoogle Scholar
  40. Wasmann, E. 1895. Die Ameisen-und Termitengäste von Brasilien. I. Teil. Mit einem Anhange von Dr. August Forel. Verh K K Zool Bot Ges Wien 45:137–179Google Scholar
  41. Wickler, W. 1968. Mimikry. Nachahmung und Täuschung in der Natur. Kindlers Universitäts Bibliothek, MünchenGoogle Scholar
  42. Wilson, E. O. 1990. Success and dominance in ecosystems: the case of the social insects. Excellence in ecology, 2. Ecology Institute, Oldendorf/LuheGoogle Scholar
  43. Witte, V., Foitzik, S., Hashim, R., Maschwitz, U., and Schulz, S. 2009. Fine tuning of social integration by two myrmecophiles of the ponerine army ant, Leptogenys distinguenda. J. Chem. Ecol. 35:355–367PubMedCrossRefGoogle Scholar
  44. Witte, V., Hänel, H., Weissflog, A., Hashim, R., and Maschwitz, U. 1999. Social integration of the myrmecophilic spider Gamasomorpha maschwitzi (Araneae: Oonopidae) in colonies of the South East Asian army ant, Leptogenys distinguenda (Formicidae: Ponerinae). Sociobiology 34:145–159Google Scholar
  45. Witte, V., Leingärtner, A., Sabaß, L., Hashim, R., and Foitzik, S. 2008. Symbiont microcosm in an ant society and the diversity of interspecific interactions. Anim. Behav. 76:1477–1486CrossRefGoogle Scholar
  46. Wunderlich, J. 1994. Beschreibung bisher unbekannter Spinnenarten und -gattungen aus Malaysia und Indonesien (Arachnida: Araneae: Oonopidae, Tetrablemmidae, Telemidae, Pholcidae, Linyphiidae, Nesticidae, Theridiidae und Dictynidae). Beiträge Araneologie 4:559–579Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Christoph von Beeren
    • 1
  • Rosli Hashim
    • 2
  • Volker Witte
    • 1
  1. 1.Department of Biology IILudwig-Maximilians University MunichPlanegg-MartinsriedGermany
  2. 2.Department of Biological SciencesUniversity MalayaKuala LumpurMalaysia

Personalised recommendations