Advertisement

Journal of Chemical Ecology

, Volume 37, Issue 7, pp 677–686 | Cite as

Up-Regulation of Lipoxygenase, Phospholipase, and Oxylipin-Production in the Induced Chemical Defense of the Red Alga Gracilaria chilensis against Epiphytes

  • Florian Weinberger
  • Ulrich Lion
  • Ludovic Delage
  • Bernard Kloareg
  • Philippe Potin
  • Jessica Beltrán
  • Verónica Flores
  • Sylvain Faugeron
  • Juan Correa
  • Georg Pohnert
Article

Abstract

The red alga Gracilaria chilensis is commercially farmed for the production of agar hydrocolloids, but some susceptible algae in farms suffer from intense epiphyte growth. We investigated the induced chemical defense response of G. chilensis against epiphytes and demonstrated that an extract of an epiphyte-challenged alga can trigger a defense response. The hormonally active metabolites were purified by RP-HPLC. Treatment with the extract or the purified fraction changed the chemical profile of the alga and increased resistance against epiphyte spores. Semi-quantitative RT-PCR and enzyme assays demonstrated that this metabolic response occurs after an increase in lipoxygenase and phospholipase A2 activity. Although this suggests the involvement of regulatory oxylipins, neither jasmonic acid nor the algal metabolite prostaglandin E2 triggers comparable defense responses.

Key Words

Induced defence Red algae Hormones Epiphytism Gracilaria chilensis Bioassays 

Notes

Acknowledgements

The study was financed by the European Commission INCO-DEV Programme (contribution of the joint research effort INCO-EPIFIGHT ICA4-CT-2001-10021), and by a European Community—Research Infrastructure Action grant (ASSEMBLE agreement no. 227799) given to FW. GP acknowledges funding of the VolkswagenFoundation within the framework of a Lichtenberg Professorship. We also thank Jonas Collén and Pi Nyvall for sharing unpublished data of an EST sequence from Gracilaria tenuistipitata.

Supplementary material

10886_2011_9981_MOESM1_ESM.pdf (547 kb)
ESM 1 (PDF 547 kb)

References

  1. Asamizu E., Nakajima M., Kitade Y., Saga n., Nakamura Y., and Tabata S. 2003. Comparison of RNA expression profiles between the two generations of Porphyra yezoensis (Rhodophyta), based on expressed sequence tag frequency analysis. J. Phycol. 39:923–930.CrossRefGoogle Scholar
  2. Baldwin I. T. 1998. Jasmonate-induced responses are costly but benefit plants under attack in native populations. Proc. Natl. Acad. Sci. U. S. A. 95:8113–8118.PubMedCrossRefGoogle Scholar
  3. Bonaventure G. and Baldwin I. T. 2010. New insights into the early biochemical activation of jasmonic acid biosynthesis in leaves. Plant Signal Behav 5:287–9.PubMedCrossRefGoogle Scholar
  4. Borngraber S., Kuban R. J., Anton M., and Kuhn H. 1996. Phenylalanine 353 is a primary determinant for the positional specificity of mammalian 15-lipoxygenases. J. Mol. Biol. 264:1145–1153.PubMedCrossRefGoogle Scholar
  5. Bouarab K., Adas F., Gaquerel E., Kloareg B., Salaun J. P., and Potin P. 2004. The innate immunity of a marine red alga involves oxylipins from both the eicosanoid and octadecanoid pathways. Plant Physiol. 135:1838–1848.PubMedCrossRefGoogle Scholar
  6. Bradford M. M. 1976. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal. Biochem. 72:248–254.PubMedCrossRefGoogle Scholar
  7. Buschmann A. H., Correa J. A., Westermeier R., Hernandez-Gonzalez M. D., and Norambuena R. 2001. Red algal farming in Chile: A review. Aquaculture 194:203–220.CrossRefGoogle Scholar
  8. Coleman R. A., Ramchunder S. J., Moody A. J., and Foggo A. 2007. An enzyme in snail saliva induces herbivore-resistance in a marine alga. Funct. Ecol. 21:101–106.CrossRefGoogle Scholar
  9. Conrath U., Beckers G. J. M., Flors V., Garcia-Agustin P., Jakab G., Mauch F., Newman M. A., Pieterse C. M. J., Poinssot B., Pozo M. J., Pugin A., Schaffrath U., Ton J., Wendehenne D., Zimmerli L., and Mauch-Mani B. 2006. Priming: Getting ready for battle. Mol. Plant-Microbe Interact. 19:1062–1071.PubMedCrossRefGoogle Scholar
  10. Correa J. A and Mclachlan J. L. 1991. Endophytic algae of Chondrus crispus (Rhodophyta) .3. Host specificity. J. Phycol. 27:448–459.CrossRefGoogle Scholar
  11. De Vos M., Van Oosten V. R., Van Poecke R. M. P., Van Pelt J. A., Pozo M. J., Mueller M. J., Buchala A. J., Metraux J. P., Van Loon L. C., Dicke M., and Pieterse C. M. J. 2005. Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol. Plant-Microbe Interact. 18:923–937.PubMedCrossRefGoogle Scholar
  12. Delumen B. O. and KazeniaC S. J. 1976. Staining for lipoxygenase activity in electrophoretic gels. Anal. Biochem. 72:428–432.PubMedCrossRefGoogle Scholar
  13. Devoto A. and Turner J. G. 2005. Jasmonate-regulated Arabidopsis stress signalling network. Physiol. Plant 123:161–172.CrossRefGoogle Scholar
  14. Farmer E. E. and Ryan C. A. 1990. Interplant communication—airborne methyl jasmonate induces synthesis of proteinase-inhibitors in plant-leaves. Proc. Natl. Acad. Sci. U. S. A. 87:7713–7716.PubMedCrossRefGoogle Scholar
  15. Fusetani N. and Hashimoto K. 1984. Prostaglandin-E2—a candidate for causative agent of ogonori poisoning. Bulletin of the Japanese Society of Scientific Fisheries 50:465–469.CrossRefGoogle Scholar
  16. Gaquerel E., Herve C., Labriere C., Boyen C., Potin P., and Salaun J. P. 2007. Evidence for oxylipin synthesis and induction of a new polyunsaturated fatty acid hydroxylase activity in Chondrus crispus in response to methyljasmonate. Biochim. Biophys. Acta, Mol. Cell Biol. Lipids 1771:565–575.Google Scholar
  17. Halitschke R., Kessler A., Kahl J., Lorenz A., and Baldwin I. T. 2000. Ecophysiological comparison of direct and indirect defenses in Nicotiana attenuata. Oecologia 124:408–417.CrossRefGoogle Scholar
  18. Howe G. A. and Jander G. 2008. Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 59:41–66.PubMedCrossRefGoogle Scholar
  19. Kallenbach M., Alagna F., Baldwin I. T., and Bonaventure G. 2010. Nicotiana attenuata SIPK, WIPK, NPR1, and fatty acid-amino acid conjugates participate in the induction of jasmonic acid biosynthesis by affecting early enzymatic steps in the pathway. Plant Physiol. 152:96–106.PubMedCrossRefGoogle Scholar
  20. Leonardi P. I., Miravalles A. B., Faugeron S., Flores V., Beltran J., and Correa J. A. 2006. Diversity, phenomenology and epidemiology of epiphytism in farmed Gracilaria chilensis (Rhodophyta) in northern Chile. Eur. J. Phycol. Google Scholar
  21. Lion U., Wiesemeier T., Weinberger F., Beltran J., Flores V., Faugeron S., Correa J., and Pohnert G. 2006. Phospholipases and galactolipases trigger oxylipin-mediated wound-activated defence in the red alga Gracilaria chilensis against epiphytes. ChemBioChem 7:457–462.PubMedCrossRefGoogle Scholar
  22. Liu Q. Y., and Reith M. E. 1994. Isolation of a gametophyte-specific cDNA encoding a lipoxygenase from the red alga Porphyra purpurea. Mol. Mar. Biol. Biotech. 3:206–209.Google Scholar
  23. Manchenko G. P. 1994. Handbook of Detection of Enzymes on Electrophoretic Gels.: CRC press, Boca Raton, USA.Google Scholar
  24. Marchler-Bauer A., Anderson J. B., Cherukuri P. F., Dewweese-Scott C., Geer L. Y., Gwadz M., He S. Q., Hurwitz D. I., Jackson J. D., Ke Z. X., Lanczycki C. J., Liebert C. A., Liu C. L., Lu F., Marchler G. H., Mullokandov M., Shoemaker B. A., Simonyan V., Song J. S., Thiessen P. A., Yamashita R. A., Yin J. J., Zhang D. C., and Bryant S. H. 2005. CDD: a conserved domain database for protein classification. Nucleic Acids Res. 33:D192-D196.PubMedCrossRefGoogle Scholar
  25. Molis M., Korner J., Ko Y. W., Kim J. H., and Wahl M. 2006. Inducible responses in the brown seaweed Ecklonia cava: the role of grazer identity and season. J. Ecol. 94:243–249.CrossRefGoogle Scholar
  26. Molis M., Korner J., Ko Y. W., and Kim J. H. 2008. Specificity of inducible seaweed anti-herbivory defences depends on identity of macroalgae and herbivores. Mar. Ecol. Prog. Ser. 354:97–105.CrossRefGoogle Scholar
  27. Nylund G. M. and Pavia H. 2005. Chemical versus mechanical inhibition of fouling in the red alga Dilsea carnosa. Mar. Ecol. Prog. Ser. 299:111–121.CrossRefGoogle Scholar
  28. Nylund G. M., Persson F., Lindegarth M., Cervin G., Hermansson M., and Pavia H. 2010. The red alga Bonnemaisonia asparagoides regulates epiphytic bacterial abundance and community composition by chemical defence. FEMS Microbiol. Ecol. 71:84–93.PubMedCrossRefGoogle Scholar
  29. Paul N. A., De Nys R., and Steinberg P. D. 2006. Chemical defence against bacteria in the red alga Asparagopsis armata: Linking structure with function. Mar. Ecol. Prog. Ser. 306:87–101.CrossRefGoogle Scholar
  30. Pavia H. and Toth G. B. 2000. Inducible chemical resistance to herbivory in the brown seaweed Ascophyllum nodosum. Ecology 81:3212–3225.Google Scholar
  31. Pohnert G. 2004. Chemical defense strategies of marine organisms. Top. Curr. Chem. 239:179–219.PubMedCrossRefGoogle Scholar
  32. Potin P., Bouarab K., Salaun J. P., Pohnert G., and Kloareg B. 2002. Biotic interactions of marine algae. Curr. Opin. Plant Biol. 5:308–317.PubMedCrossRefGoogle Scholar
  33. Prigge S. T., Boyington J. C., Faig M., Doctor K. S., Gaffney B. J., and Amzel L. M. 1997. Structure and mechanism of lipoxygenases. Biochimie 79:629–636.PubMedCrossRefGoogle Scholar
  34. Rohde S. and Wahl M. 2008. Antifeeding defense in baltic macroalgae: Induction by direct grazing versus waterborne cues. J. Phycol. 44:85–90.CrossRefGoogle Scholar
  35. Roy S., Pouenat M. L., Caumont C., Cariven C., PrevosT M. C., and Esquerretugaye M. T. 1995. Phospholipase acitivty and phospholipid patterns in tobacco cells treated with fungal elicitor. Plant Sci. (Amsterdam, Neth.) 107:17–25.Google Scholar
  36. Schuler G., Mithofer A., Baldwin I. T., Berger S., Ebel J., Santos J. G., Herrmann G., Holscher D., Kramell R., Kutchan T. M., Maucher H., Schneider B., Stenzel I., Wasternack C., and Boland W. 2004. Coronalon: a powerful tool in plant stress physiology. FEBS Lett. 563:17–22.PubMedCrossRefGoogle Scholar
  37. Sloane D. L., Leung R., Craik C. S., and Sigal E. 1991. A primary determinant for lipoxygenase positional specificity. Nature 354:149–152.PubMedCrossRefGoogle Scholar
  38. Toth G. B. and Pavia H. 2000. Water-borne cues induce chemical defense in a marine alga (Ascophyllum nodosum). Proc. Natl. Acad. Sci. U. S. A. 97:14418–14420.PubMedCrossRefGoogle Scholar
  39. Truman W., Bennettt M. H., Kubigsteltig I., Turnbull C., and Grant M. 2007. Arabidopsis systemic immunity uses conserved defense signaling pathways and is mediated by jasmonates. Proc. Natl. Acad. Sci. U. S. A. 104:1075–1080.PubMedCrossRefGoogle Scholar
  40. Weinberger F. 2007. Pathogen-induced defense and innate immunity in macroalgae. Biological Bulletin 213:290–302.PubMedCrossRefGoogle Scholar
  41. Weinberger F., Pohnert G., Kloareg B., and Potin P. 2002. A signal released by an enclophytic attacker acts as a substrate for a rapid defensive reaction of the red alga Chondrus crispus. ChemBioChem 3:1260–1263.PubMedCrossRefGoogle Scholar
  42. Wikstrom S. A. and Pavia H. 2004. Chemical settlement inhibition versus post-settlement mortality as an explanation for differential fouling of two congeneric seaweeds. Oecologia 138:223–230.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Florian Weinberger
    • 1
    • 2
    • 3
  • Ulrich Lion
    • 4
    • 5
  • Ludovic Delage
    • 1
    • 2
  • Bernard Kloareg
    • 1
    • 2
  • Philippe Potin
    • 1
    • 2
  • Jessica Beltrán
    • 6
  • Verónica Flores
    • 6
  • Sylvain Faugeron
    • 6
  • Juan Correa
    • 6
  • Georg Pohnert
    • 4
    • 5
  1. 1.Station Biologique de Roscoff, UMR 7139 CNRS-UPMC & LIA-DIAMSRoscoff CedexFrance
  2. 2.Université Pierre et Marie Curie-Paris 6, Marine Plants and Biomolecules, UMR 7139, Station BiologiqueRoscoff CedexFrance
  3. 3.Leibniz-Institut für Meereswissenschaften, IFM-GEOMARKielGermany
  4. 4.Institute for Inorganic and Analytical Chemistry, Lessingstr. 8Friedrich-Schiller-UniversityJenaGermany
  5. 5.Max-Planck-Institute for Chemical EcologyJenaGermany
  6. 6.Departamento de Ecología and Centre for Advanced Studies in Ecology and Biodiversity, Facultad de Ciencias BiológicasP. Universidad Católica de ChileSantiagoChile

Personalised recommendations