Journal of Chemical Ecology

, Volume 37, Issue 7, pp 724–735 | Cite as

Secondary Metabolites Released by The Burying Beetle Nicrophorus vespilloides: Chemical Analyses and Possible Ecological Functions

  • Thomas Degenkolb
  • Rolf-Alexander Düring
  • Andreas VilcinskasEmail author


Burying beetles of the genus Nicrophorus localize small vertebrate carcasses by emitted volatiles. The carcass that serves as reproduction and breeding site is buried in the soil by the beetles. Biparental care for offspring includes both preservation of the carrion and its preparation as diet and nursery. Buried carcasses show no signs of microbial decay, and those experimentally treated with Nicrophorus secretions are known to grow fewer bacteria and fungi. In order to investigate the chemical composition of these secretions, we used GC-MS for analysis of methanolic extracts of anal and oral secretions released by adult N. vespilloides. Furthermore, we analyzed the headspace of adult N. vespilloides by SPME-GC-MS and searched for compounds with known antimicrobial activity. We identified 34 compounds in the headspace, and anal and oral secretions, 26 of which occurred consistently. We discuss the ecological relevance of these compounds with respect to both their antimicrobial activity and ecological relevance.

Key Words

Nicrophorus Silphidae Burying beetle Food preservation Secondary metabolites Soil biology Antimicrobials Coleoptera 



The support of this study by the Erwin-Stein-Foundation (Giessen, Germany) through a grant to Thomas Degenkolb is gratefully acknowledged. The study was supported by the Hessian Ministry for Science and Art by a grant from the LOEWE-Research Focus AmbiProbe to Rolf-Alexander Düring and Andreas Vilcinskas. We are indebted to Josef K. Müller and Wolf Haberer (University of Freiburg, Germany) for providing parasite-free Nicrophorus vespilloides. Trinad Chakraborty (University of Giessen, Germany) provided mouse carcasses. The comments of Monika Wimmer-Röll and Dirk Preuß (both from University of Giessen), and Hartmut Laatsch (University of Göttingen) improved the quality of our manuscript. This work would not have been possible without the technical assistance of Janusz Czynski (University of Giessen). We thank Rod Snowdon (University of Giessen) for language editing of the manuscript.


  1. Ali, Y., Dolan, M. J., Fendler, E. J., and Larsen, E. L. 2001. Alcohols, pp. 229–253, in S. S. Block (ed.). Disinfection, Sterilization, and Preservation. 5th edn. Lippincott, Williams & Wilkins, Philadelphia, USA.Google Scholar
  2. Asolkar, R. N., Maskey, R. P., Helmke, E., and Laatsch, H. 2002. Chalcomycin B, a new macrolide antibiotic from the marine isolate Streptomyces sp. B7064. J. Antibiot. 55:893–898.PubMedGoogle Scholar
  3. Ata, A., Tan, D. S., Matochko, W. L. and Adesanwo, J. K. 2011. Chemical constituents of Drypetes gossweileri and their enzyme inhibitory and anti-fungal activities. Phytochem. Lett. 4:34–37.CrossRefGoogle Scholar
  4. Attygalle, A. B., Wu, X., Ruzicka, J., Rao, S., Garcia, S., Herath, K., Meinwald, J., Maddison, D. R., and Will, K. W. 2004. Defensive chemicals of two species of Trachypanus Motschulski. J. Chem. Ecol. 30:577–588.CrossRefPubMedGoogle Scholar
  5. Berdela, G., Lustigman, B., and Shubeck, P. P. 1994. A list of bacterial flora residing in the mid- and hindgut regions of six species of carrion beetles (Coleoptera: Silphidae). Entomol. News 105:47–58.Google Scholar
  6. Blum, M. S., Wallace. J. B., and Fales, H. M. 1973. Skatole and tridecene: identification and possible role in a chrysopid secretion. Insect Biochem. 3:353–357.CrossRefGoogle Scholar
  7. Blum, M. S., Jones, T. H., Howard, D. F., and Overal, W. L. 1982. Biochemistry of termite defenses: Coptotermes, Rhinotermes and Cornitermes species. Comp. Biochem. Physiol. B 71:731–733.CrossRefGoogle Scholar
  8. Burger, B. V., and Petersen, W. B. G. 2002. Semiochemicals of the Scarabaeinae: VI. Identification of EAD-active constituents of abdominal secretion of male dung beetle, Kheper nigroaeneus. J. Chem. Ecol. 28:501–513.CrossRefPubMedGoogle Scholar
  9. Burger, B. V., Petersen, W. B. G., Weber, W. G., and Munro, Z. M. 2002. Semiochemicals of the Scarabaeinae: VII. Identification and synthesis of EAD-active constituents of abdominal sex-attracting secretion of the male dung beetle, Kheper subaeneus. J. Chem. Ecol. 28:2527–2539.CrossRefPubMedGoogle Scholar
  10. Burger, B. V., Petersen, W. B. G., Ewig, B. T., Neuhaus, J., Tribe, G. D., Spies, H. S. C., and Burger, W. J. G. 2008a. Semiochemicals of the Scarabaeinae: VIII. Identification of active constituents of the abdominal sex-attracting secretion of the male dung beetle, Kheper bonellii, using gas chromatography with flame ionization and electroantennographic detection in parallel. J. Chromatography A 1186:245–253.CrossRefGoogle Scholar
  11. Burger, B. V., Viviers, M. Z., Bekker, J. P. I., Le Roux, M., Fish, N., Fourie, W. B., and Weibchen, G. 2008b. Chemical characterization of territorial marking fluid of male Bengal tiger, Panthera tigris. J. Chem. Ecol. 34:659–671.CrossRefGoogle Scholar
  12. Callery, P. S., and Geelhaar, L. A. 1984. Biosynthesis of 5-aminopentanoic acid and 2-piperidone in mouse. J. Neurochem. 43:1631–1634.CrossRefPubMedGoogle Scholar
  13. Classen, R., and Dettner, K. 1983. Pygidial defensive titer and population structure of Agabus bipustulatus L. and Agabus paludosus F. (Coleoptera, Dytiscidae). J. Chem. Ecol. 9:201–209.CrossRefGoogle Scholar
  14. Cork, A. 1994. Identification of electrophysiologically-active compounds for the New World screwworm, Cochliomyia hominivorax, in larval wound fluid. Med. Vet. Entomol. 8:151–159.CrossRefPubMedGoogle Scholar
  15. Dani, F. R., Cannoni, S., Turillazzi, S., and Morgan, E. D. 1996. Ant repellent effect of the sternal gland secretion of Polistes dominulus (Christ) and P. sulcifer (Zimmermann). (Hymenoptera: Vespidae). J. Chem. Ecol. 22:37–48.CrossRefGoogle Scholar
  16. DEKEIRSSCHIETER, J., VERHEGGEN, F. J., GOHY, M., HUBRECHT, F., BOURGUIGNON, L., LOGNAY, G., and HAUBRUGE, E. 2009. Cadaveric volatile organic compounds released by decaying pig carcasses (Sus domesticus L.) in different biotopes. Forensic Sci. Int. 189:46–53.Google Scholar
  17. Dettner, K., and Schwinger, G. 1980. Defensive substances from pygidial glands of water beetles. Biochem. Syst. Ecol. 8:89–95.CrossRefGoogle Scholar
  18. Dettner, K., and Reissenweber, F. 1991. The defensive secretion of Omaliinae and Proteininae (Coleoptera: Staphylinidae): its chemistry, biological and taxonomic significance. Biochem. Syst. Ecol. 19:291–303.CrossRefGoogle Scholar
  19. Devi, P., Wahidullah, S., Rodrigues, C., and Souza, L. D. 2010. The sponge-associated bacterium Bacillus licheniformis SAB1: a source of antimicrobial compounds. Mar. Drugs. 8:1203–1212.CrossRefPubMedGoogle Scholar
  20. Dhiman, S. B., Kamat, J. P., and Naik, D. B. 2009. Antioxidant activity and free radical scavenging reactions of hydroxybenzyl alcohols. Biochemical and pulse radiolysis studies. Chem. Biol. Interact. 182:119–127.CrossRefPubMedGoogle Scholar
  21. do Nascimento, R. R., Schoeters, E., Morgan, E. D., Billen, J., and Stradling, D. J. 1996. Chemistry of metapleural gland secretions of three attine ants, Atta sexdens rubropilosa, Atta cephalotes, and Acromyrmex octospinosus (Hymenoptera: Formicidae). J. Chem. Ecol. 22:987–1000.CrossRefGoogle Scholar
  22. Duffey, S. S., Blum, M. S., Fales, H. M.; Evans, S. L., Roncadori, R. W., Tiemann, D. L., and Nakagawa, Y. 1977. Benzoyl cyanide and mandelonitrile benzoate in the defensive secretion of millipedes. J. Chem. Ecol. 3:101–113.CrossRefGoogle Scholar
  23. Duffield, R. M., Blum, M. S., Wallace, J. B., Lloyd, H. A., and Regnier, F. E. 1977. Chemistry of the defensive secretion of the caddisfly Pycnopsyche scabripennis. (Trichoptera: Limnephilidae). J. Chem. Ecol. 3:649–656.CrossRefGoogle Scholar
  24. Eggert, A.-K., Reinking, M., and Müller, J. K. 1998. Parental care improves offspring survival and growth in burying beetles. Anim. Behav. 55:97–107.CrossRefPubMedGoogle Scholar
  25. Eisner, T., Deyrup, M., Jacobs, R., and Meinwald, J. 1986. Necrodols: anti-insectan terpenes from defensive secretion of carrion beetle (Necrodes surinamenisis). J. Chem. Ecol. 12:1407–1415.CrossRefGoogle Scholar
  26. Eisner, T., Attygalle, A. B., Conner, W. E., Eisner, M., Mcleod, E., and Meinwald, J. 1996. Chemical egg defense in a green lacewing (Ceraeochrysa smithi). Proc. Natl. Acad. Sci. USA 93:3280–3283.CrossRefPubMedGoogle Scholar
  27. Eisner, T., Morgan, R. C., Attygalle, A. B., Smedley, S. R., Herath, K. B., and Meinwald, J. 1997. Defensive production of quinoline by a phasmid insect (Oreophotes peruana). J. Exp. Biol. 200:2493–2500.PubMedGoogle Scholar
  28. Elsden, R. S., and Hilton, M. G. 1978. Volatile acid production from threonine, valine, leucine and isoleucine by clostridia. Arch. Microbiol. 117:165–172.CrossRefPubMedGoogle Scholar
  29. ELSDEN, R. S., HILTON, M. G., and WALLER, J. M. 1976. The end products of the metabolism of aromatic amino acids by clostridia. Arch. Microbiol. 107:283–288.Google Scholar
  30. Fischer, L. J., and Hamburger, S. A. 1980. Dimethylurea: a radical scavenger that protects isolated pancreatic islets from the effect of alloxan and dihydrofumarate exposure. Life Sci. 26:1405–1409.CrossRefPubMedGoogle Scholar
  31. Francelino, M. R., Mendonça, A. L., do Nascimento, R. R., and Santana, A. E. G. 2006. The mandibular gland secretions of the leaf-cutting ants Atta sexdens sexdens and Atta opaciceps exhibit intercaste and intercolony variations. J. Chem. Ecol. 32:643–656.CrossRefPubMedGoogle Scholar
  32. Francke, W., and Dettner, K. 2005. Chemical signaling in beetles. Top. Curr. Chem. 240:85–166.Google Scholar
  33. Frerichs, G., Arends, G., and Zörnig, H. 1930. (Hrsg.) Hagers Handbuch der Pharmazeutischen Praxis. 1. berichtigter Neudruck, 1. Band, S. 974–977, Julius Springer Verlag, Berlin, Germany.Google Scholar
  34. Goddard, P. A., and McCue, K. A. 2001. Phenolic compounds, pp. 255–282, in S. S. Block (ed.). Disinfection, Sterilization, and Preservation. 5th edn. Lippincott, Williams & Wilkins, Philadelphia, USA.Google Scholar
  35. Grossman, J. D., and Smith, R. J. 2008. Phoretic mite discrimination among male burying beetle (Nicrophorus investigator) hosts. Ann. Entomol. Soc. Am. 101:266–271.CrossRefGoogle Scholar
  36. Haberer, W., Schmitt, T., Peschke, K., Schreier, P., and Müller, J. K. 2008. Ethyl 4-methyl heptanoate: a male-produced pheromone of Nicrophorus vespilloides. J. Chem. Ecol. 34:94–98.CrossRefPubMedGoogle Scholar
  37. Haberer, W., Steiger, S., and Müller, J. K. 2010. (E)-Methylgeranate, a chemical signal of juvenile hormone titre and its role in the partner recognition system of burying beetles. Anim. Behav. 79:17–24.CrossRefGoogle Scholar
  38. Henderson, G., and Jeanne, R. L. 1989. Response of aphid-tending ants to a repellent produced by wasps (Hymenoptera: Formicidae, Vespidae). Ann. Ent. Soc. Am. 82:516–519.Google Scholar
  39. Henzell, R. F., and Lowe, M. D. 1970. Sex attractant of the grass grub beetle. Science. 168:1005–1006.CrossRefPubMedGoogle Scholar
  40. Herman, L. H., Jr. 1964. Nomenclatural consideration of Nicrophorus (Coleoptera: Silphidae). Coleopt. Bull. 18:5–7.Google Scholar
  41. Hoback, W. W., Bishop, A. A., Kroemer, J., Scalzitti, J., and Schaffer, J. J. 2004. Differences among antimicrobial properties of carrion beetle secretions reflect phylogeny and ecology. J. Chem. Ecol. 30:719–729.CrossRefPubMedGoogle Scholar
  42. Honda, K., and Kawatoko, M. 1982. Exocrine substances of the white cabbage butterfly, Pieris rapae crucivora (Lepidoptera: Pieridae). Appl. Ent. Zool. 17:325–331.Google Scholar
  43. Huberman, L., Gollop, N., Mumcuoglu, K. Y., Breuer, E., Bhusare, S. R., Shai, Y., and Galun, R. 2007. Antibacterial substances of low molecular weight isolated from the blowfly, Lucilia sericata. Med. Vet. Entomol. 21:127–131.CrossRefPubMedGoogle Scholar
  44. Hwang, B. K., Lim, S. W., Kim, B. S., Lee, J. Y., and Moon, S. S. 2001. Isolation and in vivo and in vitro antifungal activity of phenylacetic acid and sodium phenylacetate from Streptomyces humidus. Appl. Environ. Microbiol. 67:3739–3745.CrossRefPubMedGoogle Scholar
  45. Jacques, B. J., Akahane, S., Abe, M., Middelton, W., Hoback, W. W., and Schaffer, J. J. 2009. Temperature and food availability differentially affect the production of antimicrobial compounds in oral secretions produced by two species of burying beetle. J. Chem. Ecol. 35:871–877.CrossRefPubMedGoogle Scholar
  46. Kalinová, B., Podskalská, Růžička, J., and Hoskovec, J. 2009. Irresistible bouquet of death—how are burying beetles (Coleoptera: Silphidae: Nicrophorus) attracted by carcasses. Naturwiss. 96:889–899.CrossRefPubMedGoogle Scholar
  47. Kamio, M., Ko, K.-C., Zheng, S., Wang, B., Collins, S. L., Gadda, G., Tai, P. C., and Derby, C. D. 2009. The chemistry of escapin: Identification and quantification of the components in the complex mixture generated by an L-amino acid oxidase in the defensive secretion of the sea snail Aplysia californica. Chem. Eur. J. 15:1597–1603.CrossRefGoogle Scholar
  48. Kelley, K. C., and Schilling, A. B. 1998. Quantitative variation in chemical defense within and among subgenera of Cicindela. J. Chem. Ecol. 24:451–472.CrossRefGoogle Scholar
  49. Kim, Y., Cho, J.-Y., Kuk, J.-H., Moon, J.-H., Cho, J.-I., Kim, Y.-C., and Park, K.-H. 2004. Identification and antimicrobial activity of phenylacetic acid produced by Bacillus licheniformis isolated from fermented soybean, chungkook-jang. Curr. Microbiol. 48:312–317.CrossRefPubMedGoogle Scholar
  50. Laurent, P., Braekman, J.-C., and Daloze, D. 2005. Insect chemical defense. Top. Curr. Chem. 240:166–229.Google Scholar
  51. Le, P. D., Aarnink, A. J. A., Ogink, N. W. M., Becker, P. M., and Verstegen, M. W. A. 2005. Odour from animal production facilities: its relationship to diet. Nutr. Res. Rev. 18:3–30.CrossRefPubMedGoogle Scholar
  52. Lüllmann, H., Mohr, K., and Hein, L. 2006. Pharmakologie und Toxikologie. 16. Auflage. S. 492, Georg Thieme Verlag, Stuttgart, Germany.Google Scholar
  53. Maskey, R. P., Helmke, E., and Laatsch, H. 2003. Himalomycin A and B: Isolation and structure elucidation of new fridamycin type antibiotics from a marine Streptomyces isolate. J. Antibiot. 56:942–949.PubMedGoogle Scholar
  54. Meierhofer, I., Schwarz, H. H., and Müller, J. K. 1999. Seasonal variation in parental care, offspring development, and reproductive success in the burying beetle, Nicrophorus vespillo. Ecol. Entomol. 24:73–79.CrossRefGoogle Scholar
  55. Meinwald, J., Roach, B., Hicks, K., Alsop, D., and Eisner, T. 1985. Defensive steroids from a carrion beetle (Silpha americana). Experientia 41:516–519.CrossRefPubMedGoogle Scholar
  56. Meinwald, J., Roach, B., and Eisner, T. 1987. Defensive steroids from a carrion beetle (Silpha novaboracensis). J. Chem. Ecol. 13:35–38.CrossRefGoogle Scholar
  57. Mendonça, A. L., Da Silva, C. E., Torres De Mesquita, F. L., Da Silva Campos, R., do Nascimento, R. R., Pessoa De Azevedo Ximenes, E. and Santana, A. E. G. 2009. Antimicrobial activities of components of the glandular secretion of leaf cutting ants of the genus Atta. Antonie van Leeuwenhoek 95:295–303.CrossRefGoogle Scholar
  58. Müller, J. K., Eggert, A.-K., and Elsner, T. 2003. Nestmate recognition in burying beetles: the “breeder’s badge” as a cue used by females to distinguish their mates from male intruders. Behav. Ecol. 14:212–220.CrossRefGoogle Scholar
  59. Müller, J. K., Braunisch, V., Hwang, W., and Eggert, A.-K. 2007. Alternative tactics and individual reproductive success in natural associations of the burying beetle, Nicrophorus vespilloides. Behav. Ecol. 18:196–203.CrossRefGoogle Scholar
  60. Narayana, K. J. P., Prabhakar, P., Vijayalakshmi, M., Venkateswarlu, Y., and Krishna, P. S. J. 2007. Biological activity of phenylpropionic acid isolated from a terrestrial Streptomyces. Pol. J. Microbiol. 56:191–197.PubMedGoogle Scholar
  61. Nor Aliza, A. R., and Stanley, D. W. 1998. A digestive phospholipase A2 in larval mosquitoes, Aedes aegypti. Insect Biochem. Mol. Biol. 28:561–569.CrossRefGoogle Scholar
  62. Peck, S. B., and Miller, S. E. 1982. Type designations and synonymies for North American Silphidae (Coleoptera). Psyche 89:151–156.CrossRefGoogle Scholar
  63. Pukowski, E. 1933. Ökologische Untersuchungen an Necrophorus F. Z. Morphol. Ökol. Tiere 27:518–586.CrossRefGoogle Scholar
  64. Rana, R. L., Hoback, W. W., Rahim, N. A. A., Bedick, J., and Stanley, D. W. 1997. Pre-oral digestion: A phospholipase A2 associated with oral secretions in adult burying beetles, Nicrophorus marginatus. Comp. Biochem. Physiol. B 118:375–380.CrossRefGoogle Scholar
  65. Roach, B., Eisner, T., and Meinwald, J. 1990. Defense mechanisms of arthropods. 83. α- and β-necrodol, novel terpenes from a carrion beetle (Necrodes surinamensis, Silphidae, Coleoptera). J. Org. Chem. 55:4047–4051.CrossRefGoogle Scholar
  66. Rollo, C. D., Czyzewska, E., and Borden, J. H. 1994. Fatty acid necromones for cockroaches. Naturwiss. 81:409–410.CrossRefGoogle Scholar
  67. Roncadori, R. W., Duffey, S. S., and Blum, M. S. 1985. Antifungal activity of defensive secretions of certain millipedes. Mycologia 77:185–191.CrossRefGoogle Scholar
  68. Rozen, D. E., Engelmoer, D. J. P., and Smiseth, P. T. 2008. Antimicrobial strategies in burying beetles breeding on carrion. Proc. Natl. Acad. Sci. USA 105:17890–17895.CrossRefPubMedGoogle Scholar
  69. Ruther, J., Reinecke, A., Tolasch, T., and Hilker, M. 2001. Make love not war: a common arthropod defence compound as a sex pheromone in the forest cockchafer Melolontha hippocastani. Oecologia 128:44–47.CrossRefGoogle Scholar
  70. Ruther, J., Reinecke, A., Tolasch, T., and Hilker, M. 2002. Phenol—another cockchafer attractant shared by Melolontha hippocastani and Melolontha melolontha. Z. Naturforsch. C 57:910–913.Google Scholar
  71. Schildknecht, H., Holoubek, and Wolkenstörfer, M. 1962. Über einen Inhaltsstoff der Pygidialblasen vom Gelbrandkäfer. X. Mitteilung über Insektenabwehrstoffe. Z. Naturforsch. B 17:81–83.Google Scholar
  72. Schildknecht, H., and Weis, K. H. 1962. Zur Kenntnis der Pygidialblasensubstanzen vom Gelbrandkäfer (Dytiscus marginalis L.). XIII. Mitteilung über Insektenabwehrstoffe. Z. Naturforsch. B 17:448–455.Google Scholar
  73. Schildknecht, H. 1970. Die Wehrchemie von Land- und Wasserkäfern. Angew. Chem. 82:17–25.CrossRefGoogle Scholar
  74. Schwarz, H. H., and Müller, J. K. 1992. The dispersal behaviour of the phoretic mite Poecilochirus carabi (Mesostigmata, Parasitidae): adaptation to the breeding biology of its carrier Necrophorus vespilloides (Coleoptera, Silphidae). Oecologia 89:487–493.Google Scholar
  75. Schwarz, H. H., and Koulianos, S. 1998. When to leave the brood chamber? Routes of dispersal in mites associated with burying beetles. Exp. Appl. Acarol. 22:621–631.CrossRefGoogle Scholar
  76. Scott, M. P. 1998. The ecology and behavior of burying beetles. Annu. Rev. Entomol. 43:595–618.CrossRefPubMedGoogle Scholar
  77. Scott, M. P., Madjid, K., and Orians, C. M. 2008. Breeding alters cuticular hydrocarbons and mediates partner recognition by burying beetles. Anim. Behav. 76:507–513.CrossRefGoogle Scholar
  78. Sikes, D. S. 2008. Carrion beetles, pp. 749–758, in J. K. Capinera (ed.). Encyclopaedia of Entomology, vol. 4, 2nd edn. Springer Verlag, Heidelberg, Germany.Google Scholar
  79. Solter, L. F., Lustgman, B., and Shubeck, P. 1989. Survey of medically important true bacteria found associated with carrion beetles (Coleoptera: Silphidae). J. Med. Entomol. 26:354–359.PubMedGoogle Scholar
  80. Steiger, S., Peschke, K., Francke, W., and Müller, J. K. 2007. The smell of parents: breeding status influences cuticular hydrocarbon pattern in the burying beetle Nicrophorus vespilloides. Proc. R. Soc. B 274:2211–2220.CrossRefPubMedGoogle Scholar
  81. Steiger, S., Peschke, K., and Müller, J. K. 2008. Correlated changes in breeding status and polyunsaturated cuticular hydrocarbons: the chemical basis of nestmate recognition in the burying beetle Nicrophorus vespilloides? Behav. Ecol. Sociobiol. 62:1053–1060.CrossRefGoogle Scholar
  82. Steiger, S., Whitlow, S., Peschke, K., and Müller, J. K. 2009. Surface chemicals inform about sex and breeding status in the biparental burying beetle Nicrophorus vespilloides. Ethology 115:178–185.CrossRefGoogle Scholar
  83. Stratford, M., and Eklund, T. 2003. Organic acids and esters, pp. 48–84, in N. J. Russell, and G. W. Gould (eds.). Food Preservatives, 2nd. ed. Kluwer Academic/Plenum Publishers, New York, USA.Google Scholar
  84. Suzuki, S. 2000. Carrion burial by Nicrophorus vespilloides (Coleoptera: Silphidae) prevents fly infestation. Entomol. Sci. 3:269–272.Google Scholar
  85. Suzuki, S. 2001. Suppression of fungal development on carcasses by the burying beetle Nicrophorus quadripunctatus (Coleoptera: Silphidae). Entomol. Sci. 4:403–405.Google Scholar
  86. Swann, L., Chidlow, L. E., Forbes, S., and Lewis, S. W. 2010. Preliminary studies into the characterization of chemical markers of decomposition for geoforensics. J. Forensic Sci. 55:308–314.CrossRefPubMedGoogle Scholar
  87. Uscian, J. M., Miller, J. S., Sarath, G., and Stanley-Samuelson, D. W. 1995. A digestive phospholipase A2 in the tiger beetle Cicindella circumpicta. J. Insect Physiol. 41:135–141.CrossRefGoogle Scholar
  88. Zarbin, P. H. G., Leal, W. S., Ávila, C. J., and Oliveira, L. J. 2007. Identification of the sex pheromone of Phyllophaga cuyabana (Coleoptera: Melolonthidae). Tetrahedron Lett. 48:1991–1992.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Thomas Degenkolb
    • 1
  • Rolf-Alexander Düring
    • 2
  • Andreas Vilcinskas
    • 1
    • 3
    Email author
  1. 1.Institute of Phytopathology and Applied ZoologyJustus-Liebig-University of GiessenGiessenGermany
  2. 2.Institute of Soil Science and Soil ConservationJustus-Liebig-University of GiessenGiessenGermany
  3. 3.Fraunhofer Institute of Molecular Biology and Applied EcologyGiessenGermany

Personalised recommendations