Advertisement

Attraction and Electroantennogram Responses of Male Mediterranean Fruit Fly to Volatile Chemicals from Persea, Litchi and Ficus Wood

  • Jerome Niogret
  • Wayne S. Montgomery
  • Paul E. Kendra
  • Robert R. Heath
  • Nancy D. Epsky
Article

Abstract

Trimedlure is the most effective male-targeted lure for the Mediterranean fruit fly, Ceratitis capitata (Wiedemann). A similar response is elicited by plant substances that contain α-copaene, a naturally-occurring sesquiterpene. α-Copaene is a complex, highly-volatile, widely-distributed plant compound, and male C. capitata respond to material from both hosts (e.g., Litchi chinensis) and non-hosts (e.g., Ficus benjamina) that contain α-copaene. Avocado, Persea americana, recently was found to contain varying amounts of α-copaene in the bark and underlying cambial tissue. Short-range attraction bioassays and electroantennography (EAG) were used to quantify responses of sterile male C. capitata to samples of rasped wood from four avocado genotypes, L. chinensis, and F. benjamina. Gas chromatography-mass spectral (GC-MS) analysis was used to identify and quantify the major sesquiterpenes. Attraction and EAG amplitude were correlated, with L. chinensis eliciting the highest and F. benjamina the lowest responses. Responses to the avocado genotypes were intermediate, but varied among the four types. GC-MS identified 13 sesquiterpenes, including α-copaene, from all samples. Amounts of α-copaene in volatile collections from samples (3 g) ranged from 11.8 μg in L. chinensis to 0.09 μg in F. benjamina, which correlated with short-range attraction and EAG response. α-Copaene ranged from 8.0 to 0.8 μg in the avocado genotypes, but attraction and EAG responses were not correlated with the amount of α-copaene. Differences in enantiomeric structure of the α-copaene in the different genotypes and/or presence of additional sesquiterpenes may be responsible for the variation in male response. EAG responses were correlated with the amount of several other sesquiterpenes including α-humulene, and this compound elicited a strong antennal response when tested alone.

Key Words

Ceratitis capitata Persea americana Litchi chinensis Ficus benjamina α-Copaene Electroantennography Bioassays Diptera Tephritidae 

Notes

Acknowledgements

The authors thank David Long, and Janine Alonzo (USDA, ARS, Miami, FL, USA) for technical assistance, Dr. Donald Livingston III (USDA, ARS, Miami, FL, USA), and Dr. Todd Shelly (USDA, APHIS, Waimanalo, HI, USA) for reviewing the paper before submission.

References

  1. Arita, L. H., and Kaneshiro, K. Y. 1986. Structure and function of the rectal epithelium and anal glands during mating behavior in the Mediterranean fruit fly male (Ceratitis capitata). Proc. Hawaiian Entomol. Soc. 26:27–30.Google Scholar
  2. Back, E. A., and Pemberton, C. E. 1918. The Mediterranean fruit fly in Hawaii. USDA Bulletin 536.Google Scholar
  3. Bedard, C., Gries, R., Gries, G., and Bennett, R. 2002. Cydia strobilelia (Lepidoptera: Tortricidae): antennal and behavioral responses to host and nonhost volatiles. Can. Entomol. 134:793–804.CrossRefGoogle Scholar
  4. Beroza, M., and Green, N. 1963. Materials Tested as Insect Attractants. USDA Handbook 239.Google Scholar
  5. Beroza, M., Green, N., Gertler, S. I., Steiner, L.F., and Miyashita, D. H. 1961. New attractants for the Mediterranean fruit fly. J. Agric. Food Chem. 9:361–365.CrossRefGoogle Scholar
  6. Burk, T., and Calkins, C. O. 1983. Medfly mating behavior and control strategies. Florida Entomol. 66:3–18.CrossRefGoogle Scholar
  7. Carey, J. R. 1996. The future of the Mediterranean fruit fly Ceratitis capitata invasion of California: a predictive framework. Biol. Conservation 78: 35–50.CrossRefGoogle Scholar
  8. Carrasco, M., Montoya, P., Cruz-lopez, L., and Rojas, J. C. 2005. Response of the fruit fly parasitoid Diachasmimorpha longicaudata (Hymenoptera: Braconidae) to mango fruit volatiles. Environ. Entomol. 34:576–583.CrossRefGoogle Scholar
  9. Corey, E. J., and Watt, D. S. 1973. A total synthesis of (+) α- and (+) β-copaenes and ylangenes. J. Amer. Chem. Soc. 95:2303–2311.CrossRefGoogle Scholar
  10. Cossé, A. A., Todd, J. L., Millar, J. G., Martínez, L. A., and Baker, T. C. 1995. Electroantennographic and coupled gas chromatographic-electroantennographic responses of the Mediterranean fruit fly, Ceratitis capitata, to male-produced volatiles and mango odor. J. Chem. Ecol. 21:1823–1836.CrossRefGoogle Scholar
  11. Crook, D. J., Khrimian, A., Francese, J. A., Fraser, I., Poland, T. M., Sawyer, A. J., and Mastro, V. C. 2008. Development of a host-based semiochemical lure for trapping emerald ash borer Agrilus planipennis (Coleoptera: Buprestidae). Environ. Entomol. 37:356–365.PubMedCrossRefGoogle Scholar
  12. Cunningham, R. T. 1989. Parapheromones, pp. 221–230, in A. S. Robinson and G. Hooper (eds.). Fruit Flies Their Biology, Natural Enemies and Control, vol. 3A. Elsevier, Amsterdam, The Netherlands.Google Scholar
  13. De Graaf, J. 2009. Host status of avocado (‘Hass’) to Ceratitis capitata, Ceratitis rosa, and Ceratitis cosyra (Diptera: Tephritidae) in South Africa. J. Econ. Entomol. 102:1448–1459.PubMedCrossRefGoogle Scholar
  14. Dowell, R. V., Siddiqui, I. A., Meyer, F., and Spaugy, E. L. 2000. Mediterranean fruit fly preventive release program in Southern California, pp. 369–375, in K. H. Tan (ed.). Area-Wide Control of Fruit Flies and Other Insect Pests. Penerbit Universiti Sains Malaysia, Penang, Malaysia.Google Scholar
  15. Elzen, G. W., Williams, H. J., and Vinson, S. B. 1984. Isolation and identification of cotton synomones mediating searching behavior by parasitoid Campoletis sonorensis. J. Chem. Ecol. 10:1251–1264.CrossRefGoogle Scholar
  16. Farine, J.-P., Tonnard, O., Brossot, R., and Lequere, J. L. 1992. Chemistry of pheromonal and defensive secretions in the nymphs and the adults of Dysdercus cingulatus Fabr. (Heteroptera: Pyrrhocoridae). J. Chem. Ecol. 18:65–76.CrossRefGoogle Scholar
  17. Flath, R. A., Cunningham, R. T., Mon, T. R., and John, J. O. 1994a. Additional male Mediterranean fruit fly (Ceratitis capitata Wied.) attractants from angelica seed oil (Angelica archangelica L.). J. Chem. Ecol. 20:1969–1984.CrossRefGoogle Scholar
  18. Flath, R. A., Cunningham, R. T., Mon, T. R., and John, J. O. 1994b. Male lures for Mediterranean fruit fly (Ceratitis capitata Wied.): Structural analogs of α-copaene. J. Chem. Ecol. 20:2595–2609.CrossRefGoogle Scholar
  19. Flint, H. M., Salter, S. S., and Walters, S. 1979b. Caryophyllene: an attractant for the green lacewing. Environ. Entomol. 8:1123–1125.Google Scholar
  20. Franz, G. 2005. Genetic sexing strains in Mediterranean fruit fly, an example for other species amenable to large-scale rearing for the sterile insect technique, pp. 427–451, in V. A. Dyck, J. Hendrichs and A. S. Robinson (eds.). Sterile Insect Technique: Principles and Practice in Area-wide Integrated Pest Management. Springer, Dordrecht, The Netherlands.Google Scholar
  21. Grové, T., De Beer, M. S., Dreyer, S., and Stay, W. P. 1998. Monitoring Fruit Flies In Avocado Orchards. South African Avocado Growers’ Association Yearbook 21:80–82.Google Scholar
  22. Hagen, K. S., Allen, W. W., and Tasson, R. L. 1981. Mediterranean fruit fly: the worst is yet to come. California Agric. 35:5–7.Google Scholar
  23. Heath, R. R., and Manukian, A. 1992. Development and evaluation of systems to collect volatile semiochemicals from insects and plants using a charcoal-infused medium for air purification. J. Chem. Ecol. 18:1209–1226.CrossRefGoogle Scholar
  24. Heath, R. R., Manukian, A., Epsky, N. D., Sivinski, J., Calkins, C. O., and Landolt, P. J. 1993. A bioassay system for collecting volatiles while simultaneously attracting tephritid fruit flies. J. Chem. Ecol. 19:2395–2410.CrossRefGoogle Scholar
  25. Heath, R. R., Epsky, N. D., Guzman, A., Dueben, B. D., Manukian, A., and Meyer, W. L. 1995. Development of a dry plastic insect trap with food-based synthetic attractant for the Mediterranean and Mexican fruit flies (Diptera: Tephritidae). J. Econ. Entomol. 88:1307–1315.Google Scholar
  26. Heath, R. R., Epsky, N. D., Midgarden, D., and Katsoyannos B. I. 2004. Efficacy of 1,4-Diaminobutane (Putrescine) in a food-based synthetic attractant for capture of Mediterranean and Mexican fruit flies (Diptera: Tephritidae). J. Econ. Entomol. 97:1126–1131.PubMedCrossRefGoogle Scholar
  27. Heathcock, C. H. 1966. The total synthesis of (+)-copaene and (+)-8-isocopaene. J. Amer. Chem. Soc. 88:4110–4112.CrossRefGoogle Scholar
  28. Heathcock, C. H., Badger, R. A., and Patterson, J. W. Jr. 1967. Total synthesis of (+)-copaene and (+)-ylangene. A general method for the synthesis of tricycle [4.4.0.02,7] decanes. J. Amer. Chem. Soc. 89:4133–4145.CrossRefGoogle Scholar
  29. Hou, Z. Y., Chen, X., Zhang, Y., Guo, B. Q., and Yan, F. S. 1997. EAG and orientation tests on the parasitoid Lysiphlebia japonica (Hym., Aphidiidae) to volatile chemicals extracted from host plants of cotton aphid Aphis gossypii (Hom., Aphidae). J. Appl. Entomol. 121:495–500.CrossRefGoogle Scholar
  30. Ibrahim, M. A., Egigu, M. C., Kasurinen, A., Yahya A., and Holopainen, J. K. 2010. Diversity of volatile organic compound emissions from flowering and vegetative branches of Yeheb, Cordeauxia edulis (Caesalpiniacea), a threatened evergreen desert shrub. Flavour Frag. J. 25:83–92.CrossRefGoogle Scholar
  31. Jacobson, M., Uebel, E. C., Lusby, W. R., and Waters, R. M. 1987. Optical isomers of α-copaene derived from several plant sources. J. Agric. Food Chem. 35:798–800.CrossRefGoogle Scholar
  32. Jang, E., Khrimian, A., and Holler, T. 2010. Field response of Mediterranean fruit flies to Ceralure B1 relative to most active isomer and commercial formulation of Trimedlure. J. Econ. Entomol. 103:1586–1593.PubMedCrossRefGoogle Scholar
  33. Kaspi, R., and Yuval, B. 1999. Lek site selection by male Mediterranean fruit flies. J. Insect Behav. 12:267–276.CrossRefGoogle Scholar
  34. Kendra, P. E., Montgomery, W. S., Mateo, D. M., Puche, H., Epsky, N. D., and Heath, R. R. 2005. Effect of age on EAG response and attraction of female Anastrepha suspensa (Diptera: Tephritidae) to ammonia and carbon dioxide. Environ. Entomol. 34:584–590.CrossRefGoogle Scholar
  35. Kendra, P. E., Epsky, N. D., Montgomery, W. S., and Heath, R. R. 2008. Response of Anastrepha suspensa (Diptera: Tephritidae) to terminal diamines in a food-based synthetic attractant. Environ. Entomol. 37:1119–1125.PubMedCrossRefGoogle Scholar
  36. Kendra, P. E., Montgomery, W. S., Epsky, N. D., and Heath, R. R. 2009. Electroantennogram and behavioral responses of Anastrepha suspensa (Diptera: Tephritidae) to putrescine and ammonium bicarbonate lures. Environ. Entomol. 38:1259–1266.PubMedCrossRefGoogle Scholar
  37. Kouloussis, N. A., Katsoyannos, B. I., Papadopoulos, N. T., Ioannou, C. S., and Iliadis, I. V. 2011. Enhanced mating competitiveness of Ceratitis capitata males following exposure to citrus compounds. J. Applied Entomol.: in press.Google Scholar
  38. Liquido, N. J., Cunningham, R. T., and Nakagawa, S. 1990. Host plants of Mediterranean fruit fly (Diptera: Tephritidae) on the island of Hawaii (1949–1985 survey). J. Econ. Entomol. 83:1963–1878.Google Scholar
  39. Mcinnis, D. O., and Warthen, J. D. Jr. 1988. Mediterranean fruit fly (Diptera: Tephritidae): Laboratory bioassay for attraction of males to leaf or stem substances from Ficus and Litchi. J. Econ. Entomol. 81:1637–1640.Google Scholar
  40. Ndiege, I. O., Budenberg, W. J., Lwande, W., and Hassanali, A. 1991. Volatile components of banana pseudostem of a cultivar susceptible to the banana weevil. Phytochemistry 30:3929–3930.CrossRefGoogle Scholar
  41. Nishida, R., Tan, K. H., Lajis, N. H., Sukari, A. M., Takahashi, S., and Fukami, H. 1988. Accumulation of phenylpropanoids in the rectal glands of males of the Oriental fruit fly, Dacus dorsalis. Experientia 44:534–536.CrossRefGoogle Scholar
  42. Nishida, R., Shelly, T. E., Whittier, T. S., and Kaneshiro, K. Y. 2000. α-Copaene, a potential rendezvous cue for the Mediterranean fruit fly, Ceratitis capitata? J. Chem. Ecol. 26:87–100.CrossRefGoogle Scholar
  43. Oi, D. H., and Mau, R. F. L. 1989. Relationship of fruit ripeness to infestation in ‘Sharwil’ avocados by the Mediterranean fruit fly and the Oriental fruit fly (Diptera: Tephritidae). J. Econ. Entomol. 82:556–560.Google Scholar
  44. Papadopoulos, N. T., Shelly, T. E., Niyazi, N., and Jang, E. 2006. Olfactory and behavioral mechanisms underlying enhanced mating competitiveness following exposure to ginger root oil and orange oil in males of the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae). J. Insect Behav. 19: 403–418.CrossRefGoogle Scholar
  45. Prokopy, R. J., and Hendrichs, J. 1979. Mating behavior of Ceratitis capitata on a field-caged host tree. Ann. Entomol. Soc. Am. 72:624–648.Google Scholar
  46. Raghu, S. 2004. Functional significance of phytochemical lures to dacine fruit flies (Diptera: Tephritidae): an ecological and evolutionary synthesis. Bull. Entomol. Res. 94:385–399.PubMedCrossRefGoogle Scholar
  47. Shelly, T. E. 2001a. Exposure to α-copaene-containing oils enhances mating success of male Mediterranean fruit flies (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 94:497–502.CrossRefGoogle Scholar
  48. Shelly, T. E. 2001b. Lek size and female visitation in two species of tephritid fruit flies. Animal Behav. 60:245–251.CrossRefGoogle Scholar
  49. Shelly, T. E. 2004. Scent marking by males of the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae). J. Insect Behav. 17:709–722.CrossRefGoogle Scholar
  50. Shelly, T. E. 2006. Aromatherapy and medfly SIT, pp. 59–69, in Fruit Flies of Economic Importance: From Basic to Applied Knowledge. Proc. 7th Intl. Symp. on Fruit Flies of Economic Importance, Salvador, Brazil.Google Scholar
  51. Shelly, T. E., and Dewire, A. M. 1994. Chemically mediated mating success in male oriental fruit flies (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 87:375–382.Google Scholar
  52. Shelly, T. E., and Villalobos, E. M. 2004. Host plant influence on the mating success of male Mediterranean fruit flies: variable effects within and between individual plants. Animal Behav. 68:417–426.CrossRefGoogle Scholar
  53. Shelly, T. E., and Whittier, T. S. 1996. Mating competitiveness of sterile male Mediterranean fruit flies (Diptera: Tephritidae) in male-only releases. Ann. Entomol. Soc. Am. 89:754–758.Google Scholar
  54. Shelly, T. E., Mcinnis, D. O., Pahio, E., and Edu, J. 2004. Aromatherapy in the Mediterranean fruit fly (Diptera: Tephritidae): sterile males exposed to ginger root oil in prerelease storage boxes display increased mating competitiveness in field-cage trials. J. Econ. Entomol. 97:846–853.PubMedCrossRefGoogle Scholar
  55. Shelly, T. E., Edu, J., Pahio, E., and Nishimoto, J.. 2007. Scented males and choosy females: does male odor influence female mate choice in the Mediterranean fruit fly? J. Chem. Ecol. 33: 2308–2324.PubMedCrossRefGoogle Scholar
  56. Shelly, T. E., Cowan, A. N., Edu, J., and Pahio, E. 2008. Mating success of male Mediterranean fruit flies following exposure to two sources of α-copaene, manuka oil and mango. Florida Entomol. 91:9–15.CrossRefGoogle Scholar
  57. Singh, G., Marimuthu, P., De Heluani, C. S., and Catalan, C. A. N. 2007. Chemical constituents, antioxidative and antimicrobial activities of essential oil and oleoresin of tailed pepper (Pipier Cubeba L.). Int. J. Food Engineering 3:11.Google Scholar
  58. Steiner, L. F., Miyashita, D. H., Christenson, L. D. 1957. Angelica oils as Mediterranean fruit fly lures. J. Econ. Entomol. 50:505.Google Scholar
  59. Stewart, T .P., and JOHANSON, D. S. 1999. The SPS agreement of the World Trade Organization and plant pest infestation: a case study of the 1997 Mediterranean fruit fly outbreak in Florida. Am. U. Int’l L. Rev.14:1107–1127.Google Scholar
  60. Tokushima, I., Orankanok, W., Tan, K. H., and Nishida, R. 2010. Accumulation of phenylpropanoid and sesquiterpenoid volatiles in male rectal pheromonal glands of the guava fruit fly, Bactrocera correcta. J. Chem. Ecol. 36:1327–1334.PubMedCrossRefGoogle Scholar
  61. USDA-APHIS. 1983. Host list: Mediterranean fruit fly, Ceratitis capitata (Wiedemann). Biological Assessment Support Staff, Plant Protection and Quarantine, USDA.Google Scholar
  62. Warthen, J. D., and Mcinnis, D. O. 1989. Isolation and identification of male medfly attractant components in Litchi chinensis stems and Ficus spp. stem exudates. J. Chem. Ecol. 15:1931–1946.CrossRefGoogle Scholar
  63. Weissbecker, B., Van Loon, J. J. A., Posthumus, M. A., Bouwmeester, H. J., and Dicke, M. 2000. Identification of volatile potato sesquiterpenoids and their olfactory detection by the two-spotted stinkbug Perillus bioculatus. J. Chem. Ecol. 26:1433–1445.CrossRefGoogle Scholar
  64. Whittier, T. S., Kaneshiro, K. Y., and Prescott, L. D. 1992. Mating behavior of Mediterranean fruit flies (Diptera: Tephritidae) in a natural environment. Ann. Entomol. Soc. Am. 85:214–218.Google Scholar
  65. Willard, H. F., Mason, A. C. 1929. Susceptibility of avocados of the Guatemala race to attack by the Mediterranean fruit fly in Hawaii. For. Agric. 26:171–176.Google Scholar
  66. Wong, T. T. Y., Whitehand, L. C, Kobayashi, R. M., Ohinata, K., Tanaka, N., and Harris, E. J. 1982. Mediterranean fruit fly: dispersal of wild and irradiated and untreated laboratory-reared males. Environ. Entomol. 11:339–343.Google Scholar
  67. Yasui, H., Akino, T., Fukaya, M., Wakamura, S., and Ono, H. 2008. Sesquiterpene hydrocarbons: kairomones with a releaser effect in the sexual communication of the white-spotted longicorn beetle, Anoplophora malasiaca (Thomson) (Coleoptera: Cerambycidae). Chemoecology. 18:233–242.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC (outside the USA) 2011

Authors and Affiliations

  • Jerome Niogret
    • 1
  • Wayne S. Montgomery
    • 1
  • Paul E. Kendra
    • 1
  • Robert R. Heath
    • 1
  • Nancy D. Epsky
    • 1
  1. 1.United States Department of Agriculture, Agricultural Research ServiceSubtropical Horticulture Research StationMiamiUSA

Personalised recommendations