Hydrocarbons on Harvester Ant (Pogonomyrmex barbatus) Middens Guide Foragers to the Nest

  • Shelby J. Sturgis
  • Michael J. Greene
  • Deborah M. Gordon
Article

Abstract

Colony-specific cuticular hydrocarbons are used by social insects in nestmate recognition. Here, we showed that hydrocarbons found on the mound of Pogonomyrmex barbatus nests facilitate the return of foragers to the nest. Colony-specific hydrocarbons, which ants use to distinguish nestmates from non-nestmates, are found on the midden pebbles placed on the nest mound. Midden hydrocarbons occur in a concentration gradient, growing stronger near the nest entrance, which is in the center of a 1–2 m diameter nest mound. Foraging behavior was disrupted when the gradient of hydrocarbons was altered experimentally. When midden material was diluted with artificial pebbles lacking the colony-specific hydrocarbons, the speed of returning foragers decreased significantly. The chemical environment of the nest mound contributes to the regulation of foraging behavior in harvester ants.

Key Words

Pogonomyrmex barbatus Hydrocarbons Homing Chemical ecology Foraging behavior 

Notes

Acknowledgements

We thank Mattias Lanas for his technical assistance in the field. Many thanks to all the volunteers and staff at the Southwestern Research Station (SWRS) in Portal, AZ. Funding was provided by the Theodore Roosevelt Memorial Grant, the SWRS Student Support Fund, the NSF Graduate Research Fellowship, and NIH-NIDCD through a National Research Service Award (NRSA).

References

  1. Aron, S., Pasteels, J. M., and Deneubour, J. L. 1989. Trail-laying behavior during exploratory recruitment in the Argentine ant Iridomyrmex humilis mayr. Biol. Behav. 14:207–217.Google Scholar
  2. Billen, J. 2009. Occurrence and structural organization of the exocrine glands in the legs of ants. Arthropod Struct. Develop. 38:2–15.CrossRefGoogle Scholar
  3. Brand, J. M., and Mpuru, S. P. 1993. Dufour's gland and poison gland chemistry of the myrmicine ant, Messor capensis (Mayr). J. Chem. Ecol. 19:1315–1321.CrossRefGoogle Scholar
  4. Cammaerts, R. and Cammaerts, M.C. 1987. Nest Topology, Nestmate recognition, territorial marking and homing in the ant Manica rubida (Hymenoptera, Formicidae). Biol. Behav. 12:65–81.Google Scholar
  5. Cammaerts, M. C. and Rachidi, Z. 2009. Olfactive conditioning and use of visual and odorous cues for movement in the ant Myrmica sabuleti (Hymenoptera: Formicidae). Myrmecological News 12:117–127.Google Scholar
  6. Co, J. E., Jones, T., Hefetz, A., Tinaut, A., and Snelling, R. 2003. The comparative exocrine chemistry of nine Old World species of Messor (Formicidae: Myrmicinae). Biochem. System. Ecol. 31:367–373.CrossRefGoogle Scholar
  7. D'ettorre, P. and Lenoir, A. 2010. Nestmate Recognition. pp. 194–209, in L. Lach, C. Parr and K. Abbott (eds.). Ant Ecology. Oxford University Press, USA.Google Scholar
  8. Elston, W.E. et al., 1973. Tertiary Volcanic Rocks, Mogollon-Datil Province, New Mexico, and Surrounding Region: K-Ar Dates, Patterns of Eruption, and Periods of Mineralization. Geological Soc. Amer. Bull. 84:2259–2274.CrossRefGoogle Scholar
  9. Gordon, D. M. 1984a. Species-specific patterns in the social activities of harvester ant colonies (Pogonomyrmex). Insectes Sociaux 31:74–86.CrossRefGoogle Scholar
  10. Gordon, D.M. 1984b. Harvester ant middens: refuse or boundary? Ecological Entomology 9:403–412.CrossRefGoogle Scholar
  11. Gordon, D.M. 1986. The dynamics of the daily round of the harvester ant colony (Pogonomyrmex barbatus). An. Behav. 34:1402–1419.CrossRefGoogle Scholar
  12. Gordon, D.M. 1987. Group-level dynamics in harvester ants: young colonies and the role of patrolling. An. Behav. 35:833–843.CrossRefGoogle Scholar
  13. Gordon, D. M. 1991. Behavioral flexibility and the foraging ecology of seed-eating ants. Am. Nat. 138:379–411.CrossRefGoogle Scholar
  14. Gordon, D. M. 1992. How colony growth affects forager intrusion between neighboring harvester ant colonies. Behav. Ecol. Sociobiol. 31:417–427.CrossRefGoogle Scholar
  15. Gordon, D. M. and Kulig, A.W. 1996. Founding, foraging, and fighting: colony size and the spatial distribution of harvester ant nests. Ecology 77:2393–2409.CrossRefGoogle Scholar
  16. Gordon, D. M. and Mehdiabadi, N.J. 1999. Encounter rate and task allocation in harvester ants. Behav. Ecol. Sociobiol. 45:370–377.CrossRefGoogle Scholar
  17. Gordon, D. M. 2002. The regulation of foraging activity in red harvester ant colonies. Am. Nat. 159:509–518.PubMedCrossRefGoogle Scholar
  18. Gordon, D. M., Holmes, S., and Nacu, S. 2008. The short-term regulation of foraging in harvester ants. Behav. Ecol. 19:217–222.CrossRefGoogle Scholar
  19. Grasso, D. A., Sledge, M. F., Le Moli, F., Mori, A., and Turillazzi, S. 2005. Nest-area marking with faeces: a chemical signature that allows colony-level recognition in seed harvesting ants (Hymenoptera, Formicidae). Insectes Sociaux 52:36–44.CrossRefGoogle Scholar
  20. Greene, M. J. and Gordon, D.M. 2003. Social insects - Cuticular hydrocarbons inform task decisions. Nature 423:32.PubMedCrossRefGoogle Scholar
  21. Greene, M. J. and Gordon, D.M. 2007. How patrollers set foraging direction in harvester ants. Am. Nat. 170:943–948.PubMedCrossRefGoogle Scholar
  22. Hölldobler, B. 1971. Homing in the Harvester Ant Pogonomyrmex badius. Science 171:1149–1151.PubMedCrossRefGoogle Scholar
  23. Hölldobler, B., Morgan, E. D., Oldham, N. J., and Liebig, J. 2001. Recruitment pheromone in the harvester ant genus Pogonomyrmex. J. Insect Physiol. 47:369–374.PubMedCrossRefGoogle Scholar
  24. Jaffé, K., Ramos, C., Lagalla, C., and Parra, L. 1990. Orientation cues used by ants. Insectes Sociaux 37:101–115.CrossRefGoogle Scholar
  25. Lenoir, A., Depickere, S., Devers, S., Christides, J. P., and Detrain, C. 2009. Hydrocarbons in the ant Lasius niger: From the cuticle to the nest and home range marking. J. Chem. Ecol. 35:913–921.PubMedCrossRefGoogle Scholar
  26. Martin, S. J., Weihao, Z., and Drijfhout, F. P. 2009. Long-term stability of cuticular hydrocarbons facilitates chemotaxonomy using museum specimens. Biological Journal of the Linnean Society 96:732–737.CrossRefGoogle Scholar
  27. Schafer, R. J., Holmes, S., and Gordon, D. M. 2006. Forager activation and food availability in harvester ants. An. Behav. 71:815–822.CrossRefGoogle Scholar
  28. Singer, T. L. 1998. Roles of hydrocarbons in the recognition systems of insects. Am. Zoologist 38:394–405.Google Scholar
  29. Soroker, V., Vienne, C. and Hefetz, A. 1995. Hydrocarbon dynamics within and between nestmates in Cataglyphis niger (Hymenoptera: Formicidae). Journal of Chemical Ecology, 21:365–378.CrossRefGoogle Scholar
  30. Soroker, V. and Hefetz, A. 2000. Hydrocarbon site of synthesis and circulation in the desert ant Cataglyphis niger. J. Insect Physiol. 46:1097–1102.PubMedCrossRefGoogle Scholar
  31. Soroker, V., Lucas, C., Simon, T., Fresneau, D., Durand, J. L., and Hefetz, A. 2003. Hydrocarbon distribution and colony odour homogenisation in Pachycondyla apicalis. Insectes Sociaux 50:212–217.CrossRefGoogle Scholar
  32. Steck, K., Hansson, B. S., and Knaden, M. 2009. Smells like home: Desert ants, Cataglyphis fortis, use olfactory landmarks to pinpoint the nest. Front. Zool. 6:5.PubMedCrossRefGoogle Scholar
  33. Steck, K., Knaden, M., and Hansson, B. S. 2010. Do desert ants smell the scenery in stereo? An. Behav. 79:939–945.CrossRefGoogle Scholar
  34. Tissot, M., Nelson, D. R., and Gordon, D. M. 2001. Qualitative and quantitative differences in cuticular hydrocarbons between laboratory and field colonies of Pogonomyrmex barbatus. Comp. Biochem. Physiol. B-Biochem. Molec. Biol. 130:349–358.CrossRefGoogle Scholar
  35. Tullio, A., Angelis, F., Reale, S., Grasso, D., Visicchio, R., Castracani, C., Mori, A., and Moli, F. 2003. Investigation by solid-phase microextraction and gas chromatography/mass spectrometry of trail pheromones in ants. Rapid Comm. Mass Spectrom. 17:2071–2074.CrossRefGoogle Scholar
  36. Vienne, C., Soroker, V., and Hefetz, A. 1995. Congruency of hydrocarbon patterns in heterospecific groups of ants: transfer and/or biosynthesis? Insectes Sociaux, 42:267–277.CrossRefGoogle Scholar
  37. Wagner, D., Brown, M., Broun, P., Cuevas, W., Moses, L., and Chao, D. 1998. Task-related differences in the cuticular hydrocarbon composition of harvester ants, Pogonomyrmex barbatus. J. Chem. Ecol. 24: 2021–2037.CrossRefGoogle Scholar
  38. Wagner, D., Tissot, M., Cuevas, W., and Gordon, D. M. 2000. Harvester ants utilize cuticular hydrocarbons in nestmate recognition. J. Chem. Ecol. 26:2245–2257.CrossRefGoogle Scholar
  39. Walsh, C.T., Law, J. H., and Wilson, E. O. 1965. Purification of fire ant trail substance. Nature 207:320&.Google Scholar
  40. Wu, HJ. 1989. Home range orientation of the harvester ant Pogonomyrmex barbatus (Smith). Bull Ins Zool Acad Sin (Taipei) 28:87–96.Google Scholar
  41. Zar, J. H. 1999. Biostatistical Analysis. 4th ed. pp. 278–279. Prentice Hall.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Shelby J. Sturgis
    • 1
  • Michael J. Greene
    • 2
  • Deborah M. Gordon
    • 1
  1. 1.Department of BiologyStanford UniversityStanfordUSA
  2. 2.Department of Integrative BiologyUniversity of Colorado DenverDenverUSA

Personalised recommendations