Journal of Chemical Ecology

, Volume 37, Issue 2, pp 213–218 | Cite as

Alkaloids in the Mite Scheloribates laevigatus: Further Alkaloids Common to Oribatid Mites and Poison Frogs

  • Ralph A. SaporitoEmail author
  • Roy A. Norton
  • Nirina R. Andriamaharavo
  • Hugo Martin Garraffo
  • Thomas F. Spande


Poison frogs are chemically defended from predators by diverse alkaloids, almost all of which are sequestered unchanged from alkaloid-containing arthropods in the frog diet. Oribatid mites recently have been proposed as a major dietary source of poison frog alkaloids. Here, we report on alkaloids common to an oribatid mite and poison frogs. Gas chromatographic-mass spectrometric analysis of methanol extracts of adult Scheloribates laevigatus (Oribatida: Scheloribatidae) revealed nine alkaloids. Five of these have been detected previously in the skin glands of poison frogs: two isomers of the pumiliotoxin 291G, two isomers of the 5,6,8-trisubstituted indolizidine 209C, and the 5,6,8-trisubstituted indolizidine 195G. The other four alkaloids, a pumiliotoxin, a tricyclic (coccinelline-like), and two isomers of an izidine, were not previously known, but are similar in structure to alkaloids found in poison frogs. Alkaloids were not detected in immature S. laevigatus, suggesting that they are adult-specific and possibly the result of mite biosynthesis. Although most of the alkaloids detected in S. laevigatus are common to poison frogs, the geographic distributions of these organisms are not sympatric. The findings of this study indicate that oribatid mites, and in particular, members of the genus Scheloribates, represent a relatively unexplored arthropod repository for alkaloids and a significant dietary source of alkaloids in poison frogs.

Key Words

Chemical defense Dendrobatids Indolizidines Oil glands Opisthonotal glands Pumiliotoxins Scheloribatidae Tricyclic alkaloids Poison frog 



J.M. Snyder provided comments that improved the quality of this manuscript. An NIH Courtesy Appointment and a National Science Foundation Postdoctoral Research Fellowship supported R.A.S. The research at NIH was funded by intramural funds of NIDDK.

Supplementary material

10886_2011_9914_MOESM1_ESM.pdf (22 kb)
Fig. 1 Vapor-phase FTIR of mite tricylcic alkaloid of MW 247 (PDF 22 kb)
10886_2011_9914_MOESM2_ESM.pdf (24 kb)
Fig. 2 Vapor-phase FTIR of mite izidine alkaloid of MW 275 (PDF 24 kb)
10886_2011_9914_MOESM3_ESM.pdf (23 kb)
Fig. 3 Vapor-phase FTIR of mite pumiliotoxin alkaloid of MW 307 (PDF 22 kb)


  1. Braekman, J. C., Daloze, D., and Pasteels, J. M. 1998. Alkaloids in animals, pp. 349–378, in W. M. Roberts (ed.). Alkaloids: Biochemistry, Ecology, and Medicinal Applications. Plenum Press, New York.Google Scholar
  2. Daly, J. W. 2004. Marine toxins and nonmarine toxins: Convergence or symbiotic organisms? J. Nat. Prod. 67:1211–1215.CrossRefPubMedGoogle Scholar
  3. Daly, J. W., Spande, T. F., and Garraffo, H. M. 2005. Alkaloids from amphibian skin: A tabulation of over eight-hundred alkaloids. J. Nat. Prod. 68:1556–1575.CrossRefPubMedGoogle Scholar
  4. Franklin, E., Hayek, T., Fagundes, E. P., and Silva, L. L. 2004. Oribatid mite (Acari: Oribatida) contribution to decomposition dynamic of leaf litter in primary forest, second growth, and polyculture in the central Amazon. Braz. J. Biol. 64:59–72.CrossRefPubMedGoogle Scholar
  5. Hubert, J., Zilova, M., and Pekar, S. 2001. Feeding preferences and gut contents of three panphytophagous mites (Acari: Oribatida). Eur. J. Soil. Biol. 37:197–208.CrossRefGoogle Scholar
  6. Illig, J., Langel, R., Norton, R. A., Scheu, S., and Maraun, M. 2005. Where are the decomposers? Uncovering the soil food web of a tropical montane rain forest in southern Ecuador using stable isotopes (15N). J. Trop. Ecol. 21:589–593.CrossRefGoogle Scholar
  7. Ito, F., and Takaku, G. 1994. Obligate myrmecophily in an oribatid mite: Novel symbiont of ants in the oriental tropics. Naturwissenschaften 81:180–182.CrossRefGoogle Scholar
  8. Jones, T. H., and Blum, M. S. 1983. Arthropod alkaloids: Distribution, functions, and chemistry, vol. 1, pp. 33–84, in S. W. Pelletier (ed.). Alkaloids: Chemical and Biological Perspectives. Wiley, New York.Google Scholar
  9. Kuwuhara, Y. 2004. Chemical ecology of astigmatid mites, pp. 76–109, in R. T. Cardé and J. G. Millar (eds.). Advances in Insect Chemical Ecology. University Press, Cambridge.CrossRefGoogle Scholar
  10. Lindo, Z., and Winchester, N. N. 2006. A comparison of microarthropod assemblages with emphasis on oribatid mites in canopy suspended soils and forest floors associated with ancient western red cedar trees. Pedobiologia 50:31–41.Google Scholar
  11. Macfoy, C., Danosus, D., Sandit, R., Jones, T. H., Garraffo, H. M., Spande, T. F., and Daly, J. W. 2005. Alkaloids of anuran skin: Antimicrobial function? Zeitschrift fuer Naturforschung 60c:932–937.Google Scholar
  12. Maraun, M., and Scheu, S. 2000. The structure of oribatid mite communities (Acari, Oribatida): Patterns, mechanisms and implications for future research. Ecography 23:374–783.CrossRefGoogle Scholar
  13. Marshall, V. G., Reeves, R. M., and Norton, R. A. 1987. Catalogue of the Oribatida (Acari) of Continental United States and Canada. Mem. Entomol. Soc. Can. 139:418.Google Scholar
  14. Norton, R. A. 1994. Evolutionary aspects of oribatid mite life-histories and consequences for the origin of the Astigmata, pp. 99–135, in M. Houck (ed.). Mites: Ecological and Evolutionary Analyses of Life-History Patterns. Chapman and Hall, New York.Google Scholar
  15. Piel, J. 2002. A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles. Proc. Natl. Acad. Sci. USA 99:14002–14007.CrossRefPubMedGoogle Scholar
  16. Raspotnig, G. 2009. Oil gland secretions in Oribatida (Acari), pp. 235–239, in M. W. Sabelis and J. Bruin (eds.). Trends in Acarology. Proceedings of the XII International Congress of Acarology. Amsterdam.Google Scholar
  17. Raspotnig, G., Schuster, R., and Krisper, G. 2003. Functional anatomy of oil glands in Collohmannia gigantea (Acari, Oribatida). Zoomorphology 122:105–112.CrossRefGoogle Scholar
  18. Sanders, F. H., and Norton, R. A. 2004. Anatomy and function of the ptychoid defensive mechanism in the mite Euphthiracarus cooki (Acari: Oribatida). J. Morph. 259:119–154.CrossRefPubMedGoogle Scholar
  19. Saporito, R. A., Garraffo, H. M., Donnelly, M. A., Edwards, A. L., Longino, J. T., and Daly, J. W. 2004. Formicine ants: An arthropod source for the pumiliotoxin alkaloids of dendrobatid poison frogs. Proc. Natl. Acad. Sci. USA 101:8045–8050.CrossRefPubMedGoogle Scholar
  20. Saporito, R. A., Donnelly, M. A., Norton, R. A., Garraffo, H. M., Spande, T. F., and Daly, J. W. 2007a. Oribatid mites as a major dietary source for alkaloids in poison frogs. Proc. Natl. Acad. Sci. USA. 104:8885–8890.CrossRefPubMedGoogle Scholar
  21. Saporito, R. A., Donnelly, M. A., Jain, P., Garraffo, H. M., Spande, T. F., and Daly, J. W. 2007b. Spatial and temporal patterns of alkaloid variation in the poison frog Oophaga pumilio in Costa Rica and Panama over 30 years. Toxicon 50:757–778.CrossRefPubMedGoogle Scholar
  22. Saporito, R. A., Donnelly, M. A., Norton, R. A., Garraffo, H. M., Spande, T. F., and Daly, J. W. 2008. Erratum: Oribatid mites as a major dietary source for alkaloids in poison frogs. Proc. Natl. Acad. Sci. USA. 105:17586.CrossRefGoogle Scholar
  23. Saporito, R. A., Spande, T. F., Garraffo, H. M., and Donnelly, M. A. 2009. Arthropod alkaloids in poison frogs: A review of the ‘dietary hypothesis’. Heterocycles 79:277–297.CrossRefGoogle Scholar
  24. Schneider, K., and Maraun, M. 2005. Feeding preferences among dark pigmented fungal taxa (“Dematiacea”) indicate limited trophic niche differentiation of oribatid mites (Oribatida, Acari). Pedobiologia 49:61–67.CrossRefGoogle Scholar
  25. Schneider, K., and Maraun, M. 2009. Top-down control of soil microarthropods—evidence from a laboratory experiment. Soil. Biol. and Biochem. 341:170–175.CrossRefGoogle Scholar
  26. Shimano, S., Sakata, T., Mizutani, Y., Kuwahara, Y., and Aoki, J. I. 2002. Geranial: The alarm pheromone in the nymphal stage of the oribatid mite, Nothrus palustris. J. Chem. Ecol. 28:1831–1837.CrossRefPubMedGoogle Scholar
  27. Simon, M. P., and Toft, C. A. 1991. Diet specialization in small vertebrates: Mite-eating in frogs. Oikos 61:263–278.CrossRefGoogle Scholar
  28. Takada, W., Sakata, T., Shimano, S., Enami, Y., Mori, N., Nishida, R., and Kuwahara, Y. 2005. Scheloribatid mites as the source of pumiliotoxins in dendrobatid frogs. J. Chem. Ecol. 31:2403–2415.CrossRefPubMedGoogle Scholar
  29. Valderrama-Vernaza, M., Ramírez-Pinilla, M. P., and Serrano-Cardoza, V. H. 2009. Diet of the Andean frog Ranitomeya virolinensis (Athesphatanura: Dendrobatidae). J. Herp. 43:114–123CrossRefGoogle Scholar
  30. Weigmann, G. 2006. Hornmilben (Oribatida). Die Tierwelt Deutschlands, 76. Teil. Goecke & Evers, Keltern.Google Scholar
  31. Weldon, P. J., Kramer, M., Gordon, S., Spande, T. F., and Daly, J. W. 2006. A common pumiliotoxin from poison frogs exhibits enantioselective toxicity against mosquitoes. Proc. Natl. Acad. Sci. USA. 103:17818–17821.CrossRefPubMedGoogle Scholar
  32. Wilson, E. O. 2005. Oribatid mite predation by small ants of the genus Pheidole. Insectes Soc. 52:263–265.CrossRefGoogle Scholar
  33. Woodring, J. P., and Cook, E. F. 1962. The biology of Ceratozetes cisalpinus Berlese, Scheloribates laevigatus Koch, and Oppia neerlandica Oudemans (Oribatei), with a description of all stages. Acarologia 4:101–137.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ralph A. Saporito
    • 1
    Email author
  • Roy A. Norton
    • 2
  • Nirina R. Andriamaharavo
    • 3
  • Hugo Martin Garraffo
    • 3
  • Thomas F. Spande
    • 3
  1. 1.Department of BiologyJohn Carroll UniversityUniversity HeightsUSA
  2. 2.College of Environmental Science and ForestryState University of New YorkSyracuseUSA
  3. 3.Laboratory of Bioorganic ChemistryNIDDK, NIH, DHHSBethesdaUSA

Personalised recommendations