Journal of Chemical Ecology

, Volume 37, Issue 2, pp 145–149

Why Feed on Fungi? The Nutritional Content of Sporocarps Consumed by Buffy-Headed Marmosets, Callithrix flaviceps (Primates: Callitrichidae), in Southeastern Brazil

Article

Abstract

The typical diet of Callithrix marmosets is based on gums, although fungi are the dietary staple of a single group of Callithrix flaviceps studied in the Augusto Ruschi Biological Reserve, in southeastern Brazil. Here, we present the nutritional composition of two species of Mycocitrus fungi consumed by C. flaviceps, and discuss possible determinants of the preference of the marmosets for fungi over gums. The fungi were high in sugar/fiber and poor in proteins, and were similar in composition to the gums exploited by other marmosets and to the fungi consumed by Callimico goeldii. The reduced protein content of the fungi may be offset by the arthropod component of the diet of the Callithrix flaviceps study group. The low relative metabolic rate and enlarged cecum of Callithrix enable these marmosets to exploit foods with a high fiber content. In addition, the greater digestibility of chitin in comparison with plant fiber may make fungi a nutritionally more valuable resource to marmosets than gums. Marmosets, thus, may prefer to feed on fungi when an adequate supply of this resource is available in the environment.

Key Words

Mycophagy Atlantic forest Mycocitrus Diet Feeding choices Primate Callitrichidae 

References

  1. Altmann, J., 1974. Observational study of behavior: sampling methods. Behaviour 69:227–265.Google Scholar
  2. Baker, D., Fitzpatrick, M. P., and Dierenfeld, E. S. 1998. Nutrient composition of selected whole invertebrates. Zoo Biol. 17:123–134.CrossRefGoogle Scholar
  3. Bearder, S., and Martin P. 1980. Acacia gum and its use by bushbabies, Galago senegalensis (Primates: Lorisidae). Int. J. Primatol. 1:103–128.Google Scholar
  4. Bozinovic, F., and Muñoz-Pedreros A. 1995. Nutritional ecology and digestive responses of an omnivorous-insectivorous rodent (Abrothrix longipilis) feeding on fungus. Phis. Zool. 68:474–489.Google Scholar
  5. Chapman, C. A., and Fedigan, L. M. 1990. Dietary differences between neighboring Cebus capucinus groups: Local traditions, food availability or food proftability? Folia Primatol. 54:177–186.PubMedGoogle Scholar
  6. Chapman, C. A., Chapman, L. J., Cords, M., Gathua, J. M., Gautier-Hion, A., Lambert, J. E., Rode, K. D., Tutin, C. E. G., and White, L. J. T. 2002. Variation in the diets of Cercopithecus species: Differences within forests, among forests, and across species, pp. 325–350, in M. E. Glenn, M. Cords (eds.). The Guenons: Diversity and Adaptation in African Monkeys. Kluwer Academic/Plenum Publisher, New York, United States.Google Scholar
  7. Claridge, A. W., and Cork, S. J. 1994. Nutritional value of hypogeal fungal sporocarps for the long-nosed potorro (Potorous tridactylus), a forest-dwelling mycophagous marsupial. Aust. J. Zool. 42:701–710.CrossRefGoogle Scholar
  8. Claridge, A. W., Trappe, J. M., Cork, S. J., and Claridge, D. L. 1999. Mycophagy by small mammals in the coniferous forests of North America: nutritional value of sporocarps of Rhizopogon vinicolor, a common hypogeous fungus. J. Comp. Phys. B 169:172–178.CrossRefGoogle Scholar
  9. Coimbra-Filho, A. C., Rocha, N. C., and Pissinatti, A. 1980. Morfofisiologia do ceco e sua correlação com o tipo odontológico em Callitrichidae (Platyrrhini, Primates). Rev. Bras. Biol. 40:177–185.PubMedGoogle Scholar
  10. Cork, S. J., and Kenagy, G. J. 1989. Nutritional value of hypogeous fungus for a forest-dwelling ground squirrel. Ecology 70:577–586.CrossRefGoogle Scholar
  11. Cornelius, C., Dandrifosse, G., and Jeuniaux, C. 1975. Biosynthesis of chitinases by mammals of the order Carnivora. Biochem. Syst. Ecol. 3:121–122.CrossRefGoogle Scholar
  12. Corrêa, H. K. M. 1995. Ecologia e comportamento alimentar de um grupo de saguis-da-serra-escuros (Callithrix aurita E. Geoffroy 1812) no Parque Estadual da Serra do Mar, Núcleo Cunha, São Paulo, Brasil. Master thesis. Universidade Federal de Minas Gerais.Google Scholar
  13. Cuniff, P. 1995. Official Methods of Analysis of AOAC International. P. AOAC International, Arlington.Google Scholar
  14. Diemair, W. 1963. Laboratoriumsbuch für den Lebensmittelchemiker. P. 29. Verlag von Theodor Steinkopff, Leipzig.Google Scholar
  15. Digby, L. J., Ferrari, S. F., and Saltzman, W. 2011. Callitrichines: the role of competition in cooperatively breeding species, pp. 91–107, in C. Campbell, A. Fuentes, K. C. Mackinnon, S. Bearder, R.M. Stumpf (eds.). Primates in Perspective. Oxford University Press, Oxford, UK.Google Scholar
  16. Ferrari, S. F. 1991. Preliminary report on a field study of Callithrix flaviceps, pp. 159–171, in A. B. Rylands, A. T. Bernardes (eds.). A Primatologia no Brasil. Fundação Biodiversitas, Belo Horizonte.Google Scholar
  17. Guimarães, A. 1998. Ecology and social behaviour of buffy-headed marmosets, Callithrix flaviceps. Neotrop. Primates 6:51–52.Google Scholar
  18. Hanson, A. M. 2000. Habitat use in relation to diet, with particular emphasis on mycophagy, by Callimico goedii in Pando, Bolivia. Master thesis. State University of New York.Google Scholar
  19. Hanson, A. M., Hodge, K. T., and Porter, L. M. 2003. Mycophagy among primates. Mycologist 17:6–10.CrossRefGoogle Scholar
  20. Hanson, A. M., Hall, M. B., Porter, L. M., and Lintzenich, B. A. 2006. Composition and nutritional characteristics of fungi consumed by Callimico goeldii in Pando, Bolivia. Int. J. Primatol. 27:323–346.CrossRefGoogle Scholar
  21. Hilário, R. R. 2009. Padrão de atividades, dieta e uso do hábitat por Callithrix flaviceps na Reserva Biológica Augusto Ruschi, Santa Teresa, ES. Master thesis. Universidade Federal de Minas Gerais.Google Scholar
  22. Hilário, R. R., and Ferrari, S. F. 2010. Feeding ecology of a group of buffy-headed marmosets (Callithrix flaviceps): Fungi as a preferred resource. Am. J. Primatol. 72:342–349.Google Scholar
  23. Jeuniaux, C. 1961. Chitinase: an addition to the list of hydrolases in the digestive tract of vertebrates. Nature 192:135–136.CrossRefPubMedGoogle Scholar
  24. Kirkpatrick, R. C., Long, Y. C., Zhong, T., and Xiao, L. 1998. Social organization and range use in the yunnan snub-nosed monkey Rhinopithecus bieti. Int. J. Primatol. 19:13–51.CrossRefGoogle Scholar
  25. Krombach, F., Flurer, C., and Zucker, H. 1984. Effects of fibre on digestibility and passage time in Callithricidae. Lab. Anim. 18:275–279.CrossRefPubMedGoogle Scholar
  26. Martin, M. M. 1979. Biochemical implications of insect mycophagy. Biol. Rev. 54:1–21.Google Scholar
  27. Maynard, L. A., and Loosli, J. K. 1974. Nutrição Animal. P. 550. Freitas Bastos, Rio de Janeiro, Brazil.Google Scholar
  28. Melo, L. C. O., Cruz, M. A. M., and Fernandes, Z. F. 1997. Composição química de exsudatos explorados por Callithrix jacchus e sua relação com a marcação de cheiro, pp. 43–59, in M. B. C. Sousa, A. A. L. Menezes (eds.). A Primatologia no Brasil. EDUFRN/SBPr, Natal, Brazil.Google Scholar
  29. Milton, K. 1984. The role of food-processing factors in primate food choice, pp. 249–279, in P. Rodman, J. Cant (eds.). Adaptations for Foraging in Nonhuman Primates. Columbia University Press, New York, United States.Google Scholar
  30. NRC. 2003. Nutrient Requirements of Nonhuman Primates. p. 286. The National Academies Press, Washington, United States.Google Scholar
  31. Paine, R. T. 1971. The measurement and application of the calorie to ecological problems. Annu. Rev. Ecol. Sys. 2:145–164.CrossRefGoogle Scholar
  32. Passamani, M. 1996. Ecologia e comportamento de um grupo de sagui-da-cara-branca (Callithrix geoffroyi) em um fragmento de Mata Atlântica no Espírito Santo. Master thesis. Universidade Federal de Minas Gerais.Google Scholar
  33. Porter, L. M. 2001. Dietary differences among sympatric Callitrichinae in Northern Bolivia: Callimico goeldii, Saguinus fuscicollis and S. labiatus. Int. J. Primatol. 22:961–992.CrossRefGoogle Scholar
  34. Porter, L. M., Sterr, S. M., and Garber, P. A. 2007. Habitat use and ranging behavior of Callimico goeldii. Int. J. Primatol. 28:1035–1058.CrossRefGoogle Scholar
  35. Porter, L. M., and Garber P. A. 2010. Mycophagy and its influence on habitat use and ranging patterns in Callimico goeldii. Am. J. Phys. Anthropol. 142:468–475.Google Scholar
  36. Power, M. L., and Oftedal, O. V. 1996. Differences among captive callitrichids in the digestive responses to dietary gum. Am. J. Primatol. 40:131–144.CrossRefGoogle Scholar
  37. Rosenberger, A. L. 1978. Loss of incisor enamel in Marmosets. J. Mamm. 59:207–208.CrossRefGoogle Scholar
  38. Ross, C. 1992. Basal metabolic rate, body weight and diet in primates: An evaluation of the evidence. Folia Primatol. 58:7–23.CrossRefPubMedGoogle Scholar
  39. Sterling, E. J., Dierenfeld, E. S., Ashbourne, C. J., and Feistner, A. T. C. 1994. Dietary intake, food composition and nutrient intake in wild and captive populations of Daubentonia madagascariensis. Folia Primatol. 62:115–124.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Renato R. Hilário
    • 1
    • 2
  • Stephen Francis Ferrari
    • 3
  1. 1.Department of Systematics and Ecology, Universidade Federal da ParaíbaCidade UniversitáriaJoão PessoaBrazil
  2. 2.Department of General BiologyUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  3. 3.Department of BiologyUniversidade Federal de SergipeSão CristóvãoBrazil

Personalised recommendations