Journal of Chemical Ecology

, Volume 38, Issue 1, pp 81–87 | Cite as

Chemical Signals of Elephant Musth: Temporal Aspects of Microbially-Mediated Modifications

  • Thomas E. GoodwinEmail author
  • Laura J. Broederdorf
  • Blake A. Burkert
  • Innocent H. Hirwa
  • Daniel B. Mark
  • Zach J. Waldrip
  • Randall A. Kopper
  • Mark V. Sutherland
  • Elizabeth W. Freeman
  • Julie A. Hollister-Smith
  • Bruce A. Schulte


Mature male African (Loxodonta africana) and Asian (Elephas maximus) elephants exhibit periodic episodes of musth, a state in which serum androgens are elevated, food intake typically decreases, aggressiveness often increases, and breeding success is enhanced. Urine is a common source of chemical signals in a variety of mammals. Elephants in musth dribble urine almost continuously for lengthy periods, suggesting that the chemicals in their urine may reveal their physiological condition to conspecifics. We investigated the volatile urinary chemicals in captive male elephants using automated solid phase dynamic extraction (SPDE) and gas chromatography–mass spectrometry (GC-MS). We found higher levels of alkan-2-ones, alkan-2-ols, and some aromatic compounds in urine from males in musth than in urine from non-musth males or from females. Levels of ketones and alcohols increased as the urine aged, likely due to microbial metabolism of fatty acids. Protein-derived aromatic metabolites also increased in abundance after urination, likely due to microbial hydrolysis of hydrophilic conjugates. We suggest that microbes may play an important role in timed release of urinary semiochemicals during elephant musth.

Key Words

African elephant Loxodonta africana Asian elephant Elephas maximus Microbial metabolism Mammalian chemical signals Musth Solid phase dynamic extraction (SPDE) 



Urine samples were supplied by Disney’s Animal Kingdom, Indianapolis Zoo, Jacksonville Zoo, Knoxville Zoo, Louisville Zoo, Maryland Zoo, Memphis Zoo, Miami Metro Zoo, Nashville Zoo, Riddle’s Elephant and Wildlife Sanctuary, Six Flags Marine World, Seneca Park Zoo, and Toledo Zoo. Expertise and assistance in obtaining bacterial cultures and urinalyses were provided by Drs. Konnie Plumlee and Carl Fulton. Valuable suggestions were made by Heidi Riddle (Riddle’s Elephant and Wildlife Sanctuary). John Christie and Ben Davis carried out some preliminary experiments. We thank Hendrix College for financial support via the Odyssey Program. Additional funding in the early stages of this research was provided by the U.S. National Science Foundation (Award Nos. 02-17062, -17068 and -16862 to B.A.S., T.E.G. and the late L.E.L. Rasmussen, respectively). T.E.G. thanks John and Laura Byrd for their generous research support.

Supplementary material

10886_2011_56_MOESM1_ESM.pptx (206 kb)
ESM 1 (PPTX 205 kb)


  1. Alberts, A. C. 1992. Constraints on the design of chemical communication systems in terrestrial vertebrates. Am. Nat. 139:S62–S89.CrossRefGoogle Scholar
  2. Albone, E. S. 1984. Mammalian semiochemistry. Wiley-Interscience, New York.Google Scholar
  3. Albone, E. S., Gosden, P. E., and Ware, G. C. 1977. Bacteria as a source of chemical signals in mammals, pp 35–43, in D. Müller-Schwarze and M. M. Mozell (eds.), Chemical signals in vertebrates. Plenum Press, New York.Google Scholar
  4. Bagley, K. R., Goodwin, T. E., Rasmussen, L. E. L., and Schulte, B. A. 2006. Male African elephants, Loxodonta africana, can distinguish oestrus status via urinary signals. Anim. Behav. 71:1439–1445.CrossRefGoogle Scholar
  5. Burger, B. V. 2005. Mammalian semiochemicals, pp 231–278, in S. Schulz (ed.), The chemistry of pheromones and other semiochemicals II (topics in current chemistry 240). Springer-Verlag, Heidelberg.Google Scholar
  6. Clemens, E. T., and Maloiy, G. M. O. 1982. The digestive physiology of three east African herbivores: the elephant, rhinoceros and hippopotamus. J. Zool. Lond. 198:141–156.CrossRefGoogle Scholar
  7. Crespin, M. A., Gallego, M., and Valcarcel, M. 2002. Solid-phase extraction method for the determination of free and conjugated phenol compounds in human urine. J. Chromatogr. B 773:89–96.CrossRefGoogle Scholar
  8. Curtius, H. C., Mettler, M., and Ettlinger, L. 1976. Study of the intestinal tyrosine metabolism using stable isotopes and gas chromatography-mass spectrometry. J. Chromatogr. 126:569–580.PubMedCrossRefGoogle Scholar
  9. Dickschat, J. S., Helmke, E., and Schulz, S. 2005. Volatile organic compounds from arctic bacteria of the Cytophaga-Flavobacterium-Bacteroides group: a retrobiosynthetic approach in chemotaxonomic investigations. Chem. Biodivers. 2:318–353.PubMedCrossRefGoogle Scholar
  10. Ganswindt, A., Rasmussen, H. B., Heistermann, M., and Hodges, J. K. 2005. The sexually active states of free-ranging male African elephants (Loxodonta africana): defining musth and non-musth using endocrinology, physical signals, and behavior. Horm. Behav. 47:83–91.PubMedCrossRefGoogle Scholar
  11. Goodwin, T. E., Rasmussen, L. E. L., Schulte, B. A., Brown, P. A., Davis, B. L., Dill, W. M., Dowdy, N. C., Hicks, A. R., Morshedi, R. G., Mwanza, D., and Loizi, H. 2005. Chemical analysis of preovulatory female African elephant urine: a search for putative pheromones, pp 128–139, in R. T. Mason, M. P. LeMaster, and D. Müller-Schwarze (eds.), Chemical signals in vertebrates 10. Springer, New York.CrossRefGoogle Scholar
  12. Goodwin, T. E., Eggert, M. S., House, S. J., Weddell, M. E., Schulte, B. A., and Rasmussen, L. E. L. 2006. Insect pheromones and precursors in female African elephant urine. J. Chem. Ecol. 32:1849–1853.PubMedCrossRefGoogle Scholar
  13. Goodwin, T. E., Brown, P. A., Eggert, M. S., Evola, M. G., House, S. J., Morshedi, R. G., Weddell, M. E., Chen, C. J., Jackson, S. R., Aubut, Y., Eggert, J., Schulte, B. A., and Rasmussen, L. E. L. 2007. Use of automated solid phase dynamic extraction (SPDE)/GC-MS and novel macros in the search for African elephant pheromones, pp 25–35, in J. Hurst, R. Beynon, T. Wyatt, and C. Roberts (eds.), Chemical signals in vertebrates 11. Springer, New York.Google Scholar
  14. Hollister-Smith, J. A., Alberts, S. C., and Rasmussen, L. E. L. 2008. Do male African elephants, Loxodonta africana, signal musth via urine dribbling? Anim. Behav. 76:1829–1841.CrossRefGoogle Scholar
  15. Hurst, J. L., Robertson, D. H. L., Tolladay, U., and Beynon, R. J. 1998. Proteins in urine scent marks of male house mice extend the longevity of olfactory signals. Anim. Behav. 55:1289–1297.PubMedCrossRefGoogle Scholar
  16. Lazar, J., Rasmussen, L. E. L., Greenwood, D. R., Bang, I.-S., and Prestwich, G. D. 2004. Elephant albumin: a multipurpose pheromone shuttle. Chem. Biol. 11:1093–1100.PubMedCrossRefGoogle Scholar
  17. Martin, A. K. 1982. The origin of urinary aromatic compounds excreted by ruminants 3. The metabolism of phenolic compounds to simple phenols. Br. J. Nutr. 48:497–507.PubMedCrossRefGoogle Scholar
  18. Novotny, M. V. 2003. Pheromones, binding proteins and receptor responses in rodents. Biochem. Soc. Trans. 31:117–122.PubMedCrossRefGoogle Scholar
  19. Perrin, T. E., Rasmussen, L. E. L., Gunawardena, R., and Rasmussen, R. A. 1996. A method for the collection, long-term storage, and bioassay of labile volatile chemosignals. J. Chem. Ecol. 22:207–221.CrossRefGoogle Scholar
  20. Poole, J. H. 1987. Rutting behaviour in African elephants: the phenomenon of musth. Behaviour 102:283–316.CrossRefGoogle Scholar
  21. Poole, J. H. 1989. Announcing intent: the aggressive state of musth in African elephants. Anim. Behav. 37:140–152.CrossRefGoogle Scholar
  22. Rasmussen, L. E. L., and Schulte, B. A. 1998. Chemical signals in the reproduction of Asian (Elephas maximus) and African (Loxodonta africana) elephants. Anim. Reprod. Sci. 53:19–34.PubMedCrossRefGoogle Scholar
  23. Rasmussen, L. E. L., and Perrin, T. E. 1999. Physiological correlates of musth: lipid metabolites and chemical composition of exudates. Physiol. Behav. 67:539–549.PubMedCrossRefGoogle Scholar
  24. Rasmussen, L. E. L., and Wittemyer, G. 2002. Chemosignaling of musth by individual wild African elephants, (Loxodonta africana): implications for conservation and management. Proc. Roy. Soc. Lond. 269:853–860.CrossRefGoogle Scholar
  25. Rasmussen, L. E. L., and Greenwood, D. R. 2003. Frontalin: a chemical message of musth in Asian elephants (Elephas maximus). Chem. Senses 28:433–446.PubMedCrossRefGoogle Scholar
  26. Rasmussen, L. E. L., Hess, D. L., and Haight, J. D. 1990. Chemical analysis of temporal gland secretions collected from an Asian bull elephant during a four-month musth episode. J. Chem. Ecol. 16:2167–2181.CrossRefGoogle Scholar
  27. Rasmussen, L. E. L., Lee, T. D., Zhang, A., Roelofs, W. L., and Daves, Jr., G. D. 1997. Purification, identification, concentration and bioactivity of Z-7-dodecen-1-yl acetate: sex pheromone of the female Asian elephant, Elephas maximus. Chem. Senses 22:417–437.PubMedCrossRefGoogle Scholar
  28. Rhodes, G., Holland, M. L., Wiesler, D., Novotny, M., Moore, S. A., Peterson, R. G., and Felten, D. L. 1982. Excretion of urinary volatile metabolites in response to alloxan induced diabetes of short duration in rats. J. Chromatogr. 228:33–42.PubMedCrossRefGoogle Scholar
  29. Scheline, R. R. 1973. Metabolism of foreign compounds by gastrointestinal microorganisms. Pharmacol. Rev. 25:451–523.PubMedGoogle Scholar
  30. Schulte, B. A., and Rasmussen, L. E. L. 1999. Musth, sexual selection, testosterone and metabolites, pp 383–397, in R. E. Johnston, D. Müller-Schwarze, and P. Sorensen (eds.), Advances in chemical communication in vertebrates. Plenum, New York.CrossRefGoogle Scholar
  31. Schulz, S., and Dickschat, J. 2007. Bacterial volatiles: the smell of small organisms. Nat. Prod. Rep. 24:814–842.PubMedCrossRefGoogle Scholar
  32. Sorensen, P. W., and Hoye, T. H. 2010. Pheromones in vertebrates, pp 225–262, in L. M. Mander, and H.-W. Liu (eds.), Comprehensive natural products chemistry II: chemistry and biology. Elsevier, Oxford.Google Scholar
  33. van Hoven, W., Prins, R. A., and Lankhorst, A. 1981. Fermentative digestion in the African elephant. S. Afr. J. Wildl. Res. 11:78–86.Google Scholar
  34. Vanholder, R., de Smet, R., and Lesaffer, G. 1999. p-Cresol: a toxin revealing many neglected but relevant aspects of uraemic toxicity. Nephrol. Dial. Transplant 14:2813–2815.PubMedCrossRefGoogle Scholar
  35. Wiedner, E., Alleman, A. R., and Isaza, R. 2009. Urinalysis in Asian elephants (Elephas maximus). J. Zoo Wildl. Med. 40:659–666.PubMedCrossRefGoogle Scholar
  36. Wikoff, W. R., Anfora, A. T., Liu, J., Schulz, P. G., Lesley, S. A., Peters, E. C., and Siuzdak, G. 2009. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Nat. Acad. Sci. U. S. A. 106:3698–3703.CrossRefGoogle Scholar
  37. Williams, R. E., Eyton-Jones, H. W., Farnsworth, M. J., Gallagher, R., and Provan, W. M. 2002. Effect of intestinal microflora on the urinary metabolic profile of rats: a 1H-nuclear magnetic resonance spectroscopy study. Xenobiotica 32:783–794.PubMedCrossRefGoogle Scholar
  38. Zechman, J. M., Martin, I. G., Wellington, J. L., and Beauchamp, G. K. 1984. Perineal scent gland of wild and domestic cavies: bacterial activity and urine as sources of biologically significant odors. Physiol. Behav. 32:269–274.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Thomas E. Goodwin
    • 1
  • Laura J. Broederdorf
    • 1
  • Blake A. Burkert
    • 1
  • Innocent H. Hirwa
    • 1
  • Daniel B. Mark
    • 1
  • Zach J. Waldrip
    • 1
  • Randall A. Kopper
    • 1
  • Mark V. Sutherland
    • 2
  • Elizabeth W. Freeman
    • 3
  • Julie A. Hollister-Smith
    • 4
  • Bruce A. Schulte
    • 5
  1. 1.Department of ChemistryHendrix CollegeConwayUSA
  2. 2.Department of BiologyHendrix CollegeConwayUSA
  3. 3.New Century CollegeGeorge Mason UniversityFairfaxUSA
  4. 4.Oregon National Primate Research CenterOregon Health & Science UniversityBeavertonUSA
  5. 5.Department of BiologyWestern Kentucky UniversityBowling GreenUSA

Personalised recommendations