Journal of Chemical Ecology

, Volume 38, Issue 1, pp 2–22 | Cite as

The Chemical Ecology of Cecidomyiid Midges (Diptera: Cecidomyiidae)

  • David R. HallEmail author
  • Lakmali Amarawardana
  • Jerry V. Cross
  • Wittko Francke
  • Tina Boddum
  • Ylva Hillbur
Review Article


The family of cecidomyiid midges (Diptera: Cecidomyiidae) exhibits diversified patterns of life history, behavior, host range, population dynamics and other ecological traits. Those that feed on plants include many important agricultural pests; most cultivated plants are attacked by at least one midge species. Several features of the reproductive biology of cecidomyiid midges point to an important role for chemical communication, with this topic last reviewed comprehensively 12 years ago. Here, we review progress on identification of sex pheromones, chemicals involved in location of host plants, the neurophysiology of reception of volatile chemicals, and application of semiochemicals to management of pest species of cecidomyiid midges that has occurred during the last decade. We hope this review will stimulate and sustain further research in these fields.

Key Words

Cecidomyiidae Diptera Pheromone Semiochemical Synthesis Biosynthesis Olfaction Monitoring Traps Control 



The authors are grateful to Marion Harris (North Dakota State University, ND), Toby Bruce (Rothamsted Research, UK), and Gerhard Gries (Simon Fraser University, Canada) for providing valuable input into this review. YH and TB thank the Linnaeus Grant IC-E3 (Formas, Sweden) for funding.


  1. Åhman, I. 1981. The potential of some Brassica species as host plants of the brassica pod midge. Ent. Tidskr. 102:111–119Google Scholar
  2. Åhman, I. 1985. Oviposition behaviour of Dasineura brassicae on a high- versus a low-quality Brassica host. Entomol. Exp. Appl. 31:247–253.CrossRefGoogle Scholar
  3. Amarawardana, L. 2009. The chemical diversity of midge pheromones. PhD Thesis University of Greenwich, UK, 184 pp.
  4. Andersson, M. N., Haftmann, J., Stuart, J. J., Cambron, S. E., Foster, S. P., Franke, S., Francke, W., and Hillbur, Y. 2009a. Identification of sex pheromone components of the Hessian fly, Mayetiola destructor. J. Chem. Ecol. 35:81–95.PubMedCrossRefGoogle Scholar
  5. Andersson, M. N., Larsson, M. C., and Schlyter, F. 2009b. Specificity and redundancy in the olfactory system of Ips typographus: Single-cell responses to ecologically relevant odors. J. Ins. Physiol. 55:556–567.CrossRefGoogle Scholar
  6. Anfora, G., Ioriatti, C., Moser, S., Germinara, G. S., and De Cristofaro, A. 2005. Electrophysiological responses of two species of apple gall midges (Diptera: Cecidomyiidae) to host plant volatiles. IOBC/WPRS Bulletin 28:413–417.Google Scholar
  7. Anon. 2008. Pea midge (Contarinia pisi Winn.). Information Sheet No. 148 (Revised January 2008). Processors and Growers Research Organisation, The Research Station, Thornhaugh, Peterborough PE8 6HJ, UK. 2 pp.Google Scholar
  8. Baker, T. C., Fadamiro, H. Y., and Cossé, A. A. 1998. Moth uses fine tuning for odour resolution. Nature 393:530–530.CrossRefGoogle Scholar
  9. Barnes, H. F. 1931. The sex ratio at the time of emergence and the occurrence of unisexual families in the gall midges (Cecidomyiidae, Diptera). J. Genetics 24:225–234.CrossRefGoogle Scholar
  10. Barnes, H. F. 1948. Gall midges of Fruits. Crosby Lockwood & Son Ltd., London.Google Scholar
  11. Barnes, H. F. 1956. Gall Midges of Economic Importance Vol.VII, Gall Midges of Cereal Crops. Lockwood, London.Google Scholar
  12. Baur, R. 2005. Kohldrehherzgallmücke: Überwachung des Fluges mit Pheromonfallen. Der Gemüsebau/Le Maraicher. (eds.), Verband Schweizerischer Gemüseproduzenten, Kapellenstrasse 5, 3001 Switzerland. 2005/2, 16–17.Google Scholar
  13. Bedard, F., Mittaz, C., and Baroffio, C. 2010. Monitoring Resseliella theobaldi with pheromone traps in raspberry fields. Abstracts of Meeting of IOBC Working Group “Integrated Plant Protection in Fruit Crops”, Budapest, Hungary, September 2010, p. 17.Google Scholar
  14. Bergh, J. C., Harris, M. O., and Rose, S. 1990. Temporal patterns of emergence and reproduction of the Hessian fly (Diptera: Cecidomyiidae). Ann. Entomol. Soc. Am. 83:998–1004.Google Scholar
  15. Birkett, M. A., Bruce, T. J. A., Martin, J. L. Smart, L. E., Oakley, J., and Wadhams, L. J. 2004. Responses of female orange wheat blossom midge, Sitodiplosis mosellana, to wheat panicle volatiles. J. Chem. Ecol. 30:1319–1328.PubMedCrossRefGoogle Scholar
  16. Boddum, T., Skals, N., Wiren, M., Baur, R., Rauscher, S., and Hillbur, Y. 2009. Optimization of the pheromone blend of the swede midge, Contarinia nasturtii, for monitoring. Pest. Manag. Sci. 65:851–856.PubMedCrossRefGoogle Scholar
  17. Boddum, T., Skals, N., Hill, S. R., Hansson, B. S., and Hillbur, Y. 2010. Gall midge olfaction: Pheromone sensitive olfactory neurons in Contarinia nasturtii and Mayetiola destructor. J. Ins. Physiol. 56:1306–1314.CrossRefGoogle Scholar
  18. Booth, Y. K., Kitching, W., and De Voss, J. 2009. Biosynthesis of insect spiroacetals. Nat. Prod. Rep. 26: 490–525.PubMedCrossRefGoogle Scholar
  19. Bruce T. J. A., and Smart, L. E. 2009. Orange wheat blossom midge, Sitodiplosis mosellana, management. Outlooks Pest Manag. 20:89–92.CrossRefGoogle Scholar
  20. Bruce, T. J. A., Hooper, A. M., Ireland, L. A., Jones, O. T., Martin, J. L., Smart, L. E., Oakley, J., and Wadhams, L. J. 2007. Development of a pheromone trap monitoring system for orange wheat blossom midge, Sitodiplosis mosellana, in the UK. Pest Manag. Sci. 63:49–56.PubMedCrossRefGoogle Scholar
  21. Cardé, R., and Minks, A. K. 1997. Insect Pheromone Research: New Directions. Springer 712 pp.Google Scholar
  22. Choi, M., Khaskin, G., Gries, R., Gries, G., Roitberg, B. D., Raworth, D. A., Kim, D., and Bennett, R. G. 2004. (2R, 7S)-Diacetoxytridecane: sex pheromone of the aphidophagous gall midge, Aphidoletes aphidimyza. J. Chem. Ecol. 30:659–670.PubMedCrossRefGoogle Scholar
  23. Crook, D. J., and Mordue (Luntz) A. J. 1999. Olfactory responses and sensilla morphology of the blackcurrant leaf midge Dasineura tetensi. Entomol. Exp. Appl. 91:37–50.CrossRefGoogle Scholar
  24. Crook, D. J., Cross, J., Birch, A. N. E., Brennan, R. M., and Mordue (Luntz), A. J. 2001. Oviposition and larval survival of Dasineura tetensi on four blackcurrant Ribes cultivars. Entomol. Exp. Appl. 101:183–190.CrossRefGoogle Scholar
  25. Cross, J. V. 2010. To spray or not to spray: that is the question. Horticultural entomology in the 21st century. Inaugural Professorial Lecture 11 February 2010. University of Greenwich 2010, 96 p.Google Scholar
  26. Cross, J. V., and Crook, D. J. 1999. Predicting spring emergence of blackcurrant leaf midge (Dasineura tetensi) from air temperatures. Entomol. Exp. Appl. 91:421–430.CrossRefGoogle Scholar
  27. Cross, J. V., and Hall, D. R. 2007. Exploiting the sex pheromone of the apple leaf midge, Dasineura mali, for pest monitoring and control. IOBC/WPRS Bulletin 30:159–167.Google Scholar
  28. Cross, J. V., and Hall, D. R. 2009. Exploitation of the sex pheromone of apple leaf midge Dasineura mali Kieffer (Diptera: Cecidomyiidae): 1. Development of lure and trap. Crop Prot. 28:139–144.CrossRefGoogle Scholar
  29. Cross, J., Baroffio, C., Grassi, A., Hall, D., Labanowska, B., Milenkovic, S., Nilsson, T., Shternshis, M., Torneus, C., Trandem, N., and Vetek, G. 2008. Monitoring raspberry cane midge, Resseliella theobaldi, with sex pheromone traps: results from 2006. IOBC/WPRS Bulletin 39:11–17.Google Scholar
  30. Cross, J. V., Hall, D. R., Shaw, P., and Anfora, G. 2009. Exploitation of the sex pheromone of apple leaf midge Dasineura mali Kieffer (Diptera: Cecidomyiidae): 2. Use of sex pheromone traps for pest monitoring. Crop Prot. 28:128–133.CrossRefGoogle Scholar
  31. Ellis, S. A., Bruce, T. J. A., Smart, L. E., Martin, J. A., Snape, J., and Self, M. 2009. Integrated management strategies for varieties tolerant and susceptible to wheat blossom midge. Home Grown Cereals Authority Report No. 451, 148 p.Google Scholar
  32. Evans, K. A. 1991. The role of secondary plant metabolites in host-plant location by insect pests of oilseed rape (Brassica nupus L.). Unpublished PhD thesis. Hatfield Polytechnic, Hertfordshire, UK.Google Scholar
  33. Foster, S. P., and Harris, M. O. 1992. Foliar chemicals of wheat and related grasses influencing oviposition by Hessian fly, Mayetolia destructor (Say) (Diptera: Cecidomyiidae). J. Chem. Ecol. 18:1965–1980.CrossRefGoogle Scholar
  34. Foster, S. P., and Harris, M. O. 1997. Behavioral manipulation methods for insect pest-management. Annu. Rev. Entomol. 42:123–146.PubMedCrossRefGoogle Scholar
  35. Foster, S. P., Harris, M. O., and Millar, J. G. 1991a. Identification of the sex pheromone of the Hessian fly, Mayetiola destructor (Say). Naturwissenschaften. 78:130-131.CrossRefGoogle Scholar
  36. Foster, S. P., Bergh, J. C. Rose, S., and Harris. M. O. 1991b. Aspects of pheromone biosynthesis in the Hessian fly, Mayetiola destructor (Say). J. Insect Physiol. 37:899–906.CrossRefGoogle Scholar
  37. Gagné, R. J. 1989. The Plant-feeding Gall midges of North America. Cornell University Press, Ithaca, New York, 356 pGoogle Scholar
  38. Gagné, R. J. 1994. The Gall midges of the Neotropical Region. Cornell University Press, Ithaca, New York, 356 pGoogle Scholar
  39. Galanihe, L. D., and Harris, M. O. 1997. Plant volatiles mediate host-finding behaviour of the apple leaf curling midge. J. Chem. Ecol. 23:2639–2655.CrossRefGoogle Scholar
  40. Garthwaite, D. G., Wall, C., and Wardlow, L. R. 1986. Further evidence for a female sex pheromone in the blackcurrant leaf midge Dasineura tetensi. Proceedings of the British Crop Prot. Conference – Pests and Diseases 1:355–357.Google Scholar
  41. Gordon, S. C., and Williamson, B. 1991. Raspberry cane midge, pp. 75–76, in M. A. Ellis, R. H. Converse, R. N. Williams, and B. Williamson (eds.), Compendium of Raspberry and Blackberry Diseases and Insects. APS Press, St Paul, Minnesota.Google Scholar
  42. Gordon, S. C., Barrie, I. A., and Woodford, J. A. T. 1989. Predicting spring oviposition by raspberry cane midge from accumulated derived soil temperatures. Ann. Appl. Biol. 114:419–427.CrossRefGoogle Scholar
  43. Gries, R., Gries, G. Khaskin, G., King, S., Olfert, O., Kaminski, L., Lamb, R., and Bennett, R. 2000. Sex pheromone of orange wheat blossom midge, Sitodiplosis mosellana. Naturwissenschaften. 87:450–454.PubMedCrossRefGoogle Scholar
  44. Gries, R., Khaskin, G., Gries, G., Bennett, R. G., King, S. G. G., Morewood, P., Slessor, K. N., and Morewood W. D. 2002. (Z,Z)-4,7-Tridecadien-(S)-2-yl acetate: sex pheromone of Douglas–fir cone gall midge, Contarinia oregonensis. J. Chem. Ecol. 28:2283–2297.PubMedCrossRefGoogle Scholar
  45. Gries, R., Khaskin, G., Bennett, R. G., Miroshnychenko, A., Burden, K., and Gries, G. 2005. (S,S)-2,12-, (S,S)-2,13- and (S,S)-2,14-Diacetoxyheptadecanes: sex pheromone components of red cedar cone midge, Mayetiola thujae. J. Chem. Ecol. 31:2933–2946.PubMedCrossRefGoogle Scholar
  46. Gries, R., Khaskin, G., Daroogheh, H., Mart, C., Karadag, S., Kubilay Er, M., Britton, R., and Gries, G. 2006. (2S,12Z)-2-Acetoxy-12-heptadecene: major sex pheromone component of pistachio twig borer, Kermania pistaciella. J. Chem. Ecol. 32:2667–2677.PubMedCrossRefGoogle Scholar
  47. Griffiths, D. W., Robertson, G. W., Birch, A. N. E., and Brennan, R. M. 1999. Evaluation of thermal desorption and solvent elution combined with polymer entrainment for the analysis of volatiles released by leaves from midge (Dasineura tetensi) resistant and susceptible blackcurrant (Ribes nigrum L.) cultivars. Phytochem. Anal. 10:328–334.CrossRefGoogle Scholar
  48. Hall, D. R., Farman, D. I., Cross, J. V., Pope, T. W., Ando, T., and Yamamoto, M. 2009. (S)-2-Acetoxy-5-undecanone, female sex pheromone of raspberry cane midge, Resseliella theobaldi (Barnes). J. Chem. Ecol. 35:230–242.PubMedCrossRefGoogle Scholar
  49. Hall, D., Shepherd, T., Fountain, M., Vétek, G., Birch, N., Jorna, C., Farman, D., and Cross, J. 2010. Investigation of attraction of raspberry cane midge, Resseliella theobaldi, to volatiles from wounded raspberry primocanes. Abstracts of Meeting of IOBC Working Group “Integrated Plant Protection in Fruit Crops”, Budapest, Hungary. IOBC/WPRS Bulletin 68:1–7.Google Scholar
  50. Hallberg, E., and Hansson, B. 1999. Arthropod sensilla: morphology and phylogenetic considerations. Microscopy Res. Tech. 47:428–439.CrossRefGoogle Scholar
  51. Hallett, R. H., Goodfellow, S. A., and Heal, J. D. 2007. Monitoring and detection of the swede midge (Diptera: Cecidomyiidae). Can. Entomol. 139:700–712.CrossRefGoogle Scholar
  52. Hallett, R. H., Chen, M., Sears, M. K., and Shelton, A. M. 2009. Insecticide management strategies for control of swede midge (Diptera: Cecidomyiidae) on cole crops. J. Econ. Entomol. 102:2241–2254.PubMedCrossRefGoogle Scholar
  53. Hansson, B. S. 1995. Olfaction in Lepidoptera. Experentia 51:1003–1027.CrossRefGoogle Scholar
  54. Harris, M. O., and Foster, S. P. 1991. Wind tunnel studies of sex pheromone mediated behavior of the Hessian fly (Diptera: Cecidomyiidae). J. Chem. Ecol. 17:2421–2435.CrossRefGoogle Scholar
  55. Harris, M. O., and Foster, S. P. 1999. Gall Midges, pp. 27–49, in J. Hardie, and A. K. Minks (eds.), Pheromones of Non-lepidopteran Insects Associated with Agricultural Plants. CABI Publishing.Google Scholar
  56. Harris, M. O., and Rose, S. 1989. Temporal changes in the egglaying behavior of the Hessian fly. Entomol. Exp. Appl. 53:17–29.CrossRefGoogle Scholar
  57. Harris, M. O., and Rose, S. 1990. Chemical, color, and tactile cues influencing oviposition behavior of the Hessian fly (Diptera: Cecidomyiidae). Environ. Entomol. 19:303–308.Google Scholar
  58. Harris, M. O., Foster, K. A., and Dhana, S. 1996. Sex pheromone communication in the apple leaf curling midge (Dasineura mali) Proc. 49th N.Z. Plant Protection Conf. 52–58.Google Scholar
  59. Harris, M. O., Stuart, J. J., Mohan, S., Nair, S. Lamb, R. J., and Rohfritsch, O. 2003. Grasses and gall midges: plant defense and insect adaptation. Annu. Rev. Entomol. 48:549–77.PubMedCrossRefGoogle Scholar
  60. Heath, J. J., Gaul, S. O., Nash, D. M., Smith, R. F., and Kukal, O. 1998. Evidence for a female-produced sex pheromone in the apple leaf midge, Dasineura mali (Kieffer) (Diptera: Cecidomyiidae). Can. Entomol. 130:109–110.CrossRefGoogle Scholar
  61. Heath, J. J., Zhang, A., Roelofs, W. L., and Smith, R. F. 2005. Flight activity and further evidence for a female-produced sex pheromone of the apple leaf midge, Dasineura mali, in Nova Scotia. Northeast. Nat. 12:93–102.CrossRefGoogle Scholar
  62. Hillbur, Y., Anderson, P., Arn, H., Bengtsson, M., Löfqvist, J., Biddle, A. J., Smitt, O., Högberg, H. -E., Plass, E., Franke, S., and Francke, W. 1999. Identification of sex pheromone components of the pea midge, Contarinia, pisi (Diptera: Cecidomyiidae). Naturwissenschaften 86:292–294.CrossRefGoogle Scholar
  63. Hillbur, Y., El-Sayed, A., Bengtsson, M., Löfqvist, J., Biddle, A., Plass, E., and Francke, W. 2000. Laboratory and field study of the attraction of male pea midges, Contarinia pisi, to synthetic sex pheromone components. J. Chem. Ecol. 26:1941–1951.CrossRefGoogle Scholar
  64. Hillbur, Y., Bengtsson, M., Löfqvist, J., Biddle, A., Pillon, O., Plass, E., Francke, W., and Hallberg, E. 2001. A chiral sex pheromone system in the pea midge, Contarinia pisi. J. Chem. Ecol. 27:1391–1407.PubMedCrossRefGoogle Scholar
  65. Hillbur, Y., Celander, M., Baur, R., Rauscher, S., Haftmann, J., Franke, S., and Francke, W. 2005. Identification of the sex pheromone of the Swede midge, Contarinia nasturtii. J. Chem. Ecol. 31:1807–1828.PubMedCrossRefGoogle Scholar
  66. Hooper, A. M., Dufour, S., and Willaert, S. 2007. Synthesis of (2S,7S)-dibutyroxynonane, the sex pheromone of the orange wheat blossom midge, Sitodiplosis mosellana (Gehin) (Diptera : Cecidomyiidae), by diastereoselective silicon-tethered ring-closing metathesis. Tetrahedron Lett. 34:5991–5994.CrossRefGoogle Scholar
  67. Keil, T. 1999. Morphology and development of the peripheral olfactory organs, pp. 6–47, in B. Hansson (ed.), Insect Olfaction. Springer, Berlin.Google Scholar
  68. Lee, C., and Lee, H. P. 1985. Studies on the sex pheromone and antennal ultrastructure of the pine gall midge, (Thecodiplosis japonensis Uchida et Inouye). Korean J. Entomol. 15:31–40.Google Scholar
  69. Lerin, J. 1984. Effet des deux isothiocyanates sur les niveaux de capture en cuvettes jaunes d’insectes ravageurs de colza. Acta Oecol. 5:61–70.Google Scholar
  70. Liu, Y., He, X. -K., Hall, D., Farman, D., Amarawardana, L., Cross, J., and Liu, Q. -R. 2009. (2S,8Z)-2-Butyroxy-8-heptadecene: major component of the sex pheromone of chrysanthemum gall midge, Rhopalomyia longicauda. J. Chem. Ecol. 35:715–723.PubMedCrossRefGoogle Scholar
  71. Mamaev, B. M., and Krivosheina, N. P. 1965. The larvae of the gall midges (Diptera, Cecidomyiidae). A.A. Balkema, Rotterdam, 278 p.Google Scholar
  72. Mckay, P. A., and Hatchett, J. H. 1984. Mating behavior and evidence of a female sex pheromone in the Hessian fly, Mayetiola destructor (Say) (Diptera: Cecidomyiidae). Ann. Entomol. Soc. Am. 77:616–620.Google Scholar
  73. Miller, G. E., and Borden, J. H. 1984. Reproductive behavior of the Douglas-fir cone gall midge, Contarinia oregonensis (Diptera: Cecidomyiidae). Can. Entomol. 116:607–618.CrossRefGoogle Scholar
  74. Mitchell, C., Brennan, R. M., Cross, J. V., and Johnson, S. N. 2011. Arthropod pests of currant and gooseberry crops in the U.K.: their biology, management and future prospects. Agric. For. Entomol. 13:221–237.CrossRefGoogle Scholar
  75. Molnár, B., Kárpáti, Z., Szöcs, G., and Hall, D. R. 2009. Identification of female-produced sex pheromone of the honey locust gall midge, Dasineura gleditchiae, a new urban pest in Europe. J. Chem. Ecol. 35:706–714.PubMedCrossRefGoogle Scholar
  76. Morris, B. D., Foster, S. P., and Harris, M. O. 2000. Identification of 1-octacosanal and 6-methoxy-2-benzoxazolinone from wheat as ovipositional stimulants for Hessian fly, Mayetiola destructor . J. Chem. Ecol. 26:859–873.CrossRefGoogle Scholar
  77. Murchie, A. K., and Hume, K. D. 2003. Evidence for monogeny in the brassica pod midge Dasineura brassicae. Entomol. Exp. Appl. 107:237–241.CrossRefGoogle Scholar
  78. Murchie, A. K., Smart, L. E., and Williams, I. H. 1997. Responses of Dasineura brassicae and its parasitoids Platygaster subuliformis and Omphale clypealis to field traps baited with organic isothiocyanates. J. Chem. Ecol. 23:917–926.CrossRefGoogle Scholar
  79. Nijveldt, W., Labruyere, R. E., and Engels, G. M. M. T. 1963. The stem disease problem of the raspberry. Neth. J. Plant Pathol. 69:221–257.Google Scholar
  80. Oakley, J. N. 1994. Orange blossom midge: a literature review and survey of the 1993 outbreak. HGCA Research Review No. 28.Google Scholar
  81. Oakley, J. N., Cumbleton, P. C., Corbett, S. J., Saunders, P., Green, D. I., and Young, J. E. B. 1998. Prediction of orange wheat blossom midge activity and risk of damage. Crop Prot. 17:145–149.CrossRefGoogle Scholar
  82. Ochieng, S. A., Hallberg, E., and Hansson, B. S. 1998. Fine structure and distribution of antennal sensilla of the desert locust, Schistocerca gregaria (Orthoptera: Acrididae). Cell Tissue Res. 291:525–536.PubMedCrossRefGoogle Scholar
  83. Olfert, O., Mukerji, M. K., and Doane, J. F. 1985. Relationship between infestation and levels and yield loss caused by wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae), in wheat. Can. Entomol. 120:497–505.Google Scholar
  84. Pasalu, I. C., Huang, B.-C., Zang, Y., and Tan, Y. -J. 2004. Current status of rice gall midge biotypes in India and China. pp. 131–138, in J. Bennett, J. S. Bentur, I. C. Pasalu and K. Krishnaiah (eds.), New Approaches to Gall Midge Resistance in Rice. International Rice Research Institute, Los Banos, Philippines.Google Scholar
  85. Passlow, T. 1965. Bionomics of sorghum midge (Contarinia sorghicola Coq.) in Queensland, with particular reference to diapause. Queensl. J. Agr. Anim. Sci. 22:149–167.Google Scholar
  86. Pettersson, J. 1976. Ethology of Dasyneura brassicae Winn. (Dipt. Cecidomyiidae). I. Laboratory studies of olfactory reactions to the host plant. Symp. Biol. Hung. 16:203–208.Google Scholar
  87. Pitcher, R. S. 1952. Observations on the raspberry cane midge (Thomasiiniana theobaldi Barnes). I. Biology. J. Hort. Sci. 27:71–94.Google Scholar
  88. Pivnick, K. A. 1993. Response of males to female sex pheromone in the orange wheat blossom midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae). J. Chem. Ecol. 19:1677–1689.CrossRefGoogle Scholar
  89. Qin, X. -R., Ando, T., Yamamoto, M., Yamashita, M., Kusano, K., and Abe, H. 1997. Resolution of pheromonal epoxydienes by chiral HPLC, stereochemistry of separated enantiomers, and their field evaluation. J. Chem. Ecol. 23:1403–1417.CrossRefGoogle Scholar
  90. Raina, A. K. 1993. Neuroendocrine control of sex pheromone biosynthesis in Lepidoptera. Annu Rev Entomol. 38:329–349.PubMedCrossRefGoogle Scholar
  91. Riolo, P., Hillbur, Y., Isidora, N., Peri, E., Haftmann, J., Franke, S., and Francke, W. 2006. Electrophysiological response of sorghum midge, Contarinia sorghicola, to candidate sex pheromone compounds. Abstracts of 22nd ISCE Annual Meeting, Barcelona, Spain. 81 pp.Google Scholar
  92. Sain, M., and Kalode, M. B. 1985. Traps to monitor gall midge populations in rice. Curr. Sci. 54:876–877.Google Scholar
  93. Sauer, C. 2008. Infoblatt für den Gartenbau in Mecklenburg-Vorpommern, pp 122–127, in J. Brüggemann (ed.), LMS Landwirstchaftsberatung Mecklenburg-Vorpommern, Schleswig-Holstein. Vol. 2.Google Scholar
  94. Sharma, H. C., and Franzmann, B. A. 2001a. Orientation of sorghum midge, Stenodiplosis sorgicola, females (Diptera: Cecidomyiidae) to colour and host-odor stimuli. J. Agr. Urban Entomol. 18:237–248.Google Scholar
  95. Sharma, H. C., and Franzmann, B. A. 2001b. Host-plant preference and oviposition responses of the sorghum midge, Stenodiplosis sorghicola (Coquillett) (Dipt., Cecidomyiidae) towards wild relatives of sorghum. J. Appl. Entomol. 125:109–114.CrossRefGoogle Scholar
  96. Sharma, H. C., and Vidyasagar, P. 1992. Orientation of males of sorghum midge, Contarinia sorghicola, to sex pheromones from virgin females in the field. Entomol. Exp. Appl. 64:23–29.CrossRefGoogle Scholar
  97. Sipos, K., Madár, S., and Pénzes, B. 2010. A possibility of automated prediction of pests. Abstracts of Meeting of IOBC Working Group “Integrated Plant Protection in Fruit Crops”, Budapest, Hungary, September 2010, p. 36.Google Scholar
  98. Slessor, K. N., King, G. G. S., Miller, D. R., Winston, M. L., and Cutforth, T. L. 1985. Determination of chirality of alcohol or latent alcohol semiochemicals in individual insects. J. Chem. Ecol. 11:1659–1667.CrossRefGoogle Scholar
  99. Slifer, E. H., and Sekhon, S. S. 1971. Circumfila and other sense organs on the antenna of the sorghum midge (Diptera: Cecidomyiidae). J. Morph. 133:281–302.CrossRefGoogle Scholar
  100. Solinas, M., and Nuzzaci, G. 1987. Antennal sensilla of Mycodiplosis erysiphes Ruebs. (Cecidomyiidae: Diptera). Bolletino dell’Istituto de entomologia ‘Guido Grandi’ della Università di Bologna 41:173–194.Google Scholar
  101. Sosa, O. 1981. Biotypes J and L of Hessian fly discovered in an Indiana wheat field. J. Econ. Entomol. 74:180–182.Google Scholar
  102. Stuart, J. J., and Hatchett, J. H. 1991. Genetics of sex determination in the Hessian fly. J. Heredity 83:43–52.Google Scholar
  103. Suckling, D. M., Walker, J. T. S., Shaw, P. W., Manning, L., Lo, P., Wallis, R., Bell, V., Sandanayaka, W. R. M., Hall, D. R., Cross, J. V., and El-Sayed, A. M. 2007. Trapping Dasineura mali (Diptera: Cecidomyiidae) in apples. J. Econ. Entomol. 100:745–751.PubMedCrossRefGoogle Scholar
  104. Sylvén, E. 1970. Field movement of radioactively-labelled adults of Dasyneura brassicae Winn. (Dipt., Cecidomyiidae). Ent. Scand. 1:161–187.CrossRefGoogle Scholar
  105. Tanasković, S., and Milenković, S. 2010. Monitoring the flight dynamics of raspberry cane midge Resseliella theobaldi Barnes by pheromone traps in Western Serbia. Abstracts of Meeting of IOBC Working Group “Integrated Plant Protection in Fruit Crops”, Budapest, Hungary, September 2010, p. 18.Google Scholar
  106. Tokunaga, M., Larrow, J. F., Kakiuchi, F., and Jacobsen, E. N. 1997. Asymmetric catalysis with water: efficient kinetic resolution of terminal epoxides by means of catalytic hydrolysis. Science 277:936–938.PubMedCrossRefGoogle Scholar
  107. Wall, C., Pickett, J. A., Garthwaite, D. G., and Morris, N. 1985. A female sex pheromone in the pea midge, Contarinia pisi. Entomol. Exp. Appl. 35:11–14.CrossRefGoogle Scholar
  108. Wicker-Thomas, C. 2007. Pheromonal communication involved in courtship behavior in Diptera. J. Ins. Physiol. 53:1089–1100.CrossRefGoogle Scholar
  109. Williams, I. H., and Martin, A. P. 1986. Evidence for a female sex pheromone in the brassica pod midge Dasineura brassicae. Phys. Entomol. 11:353–356.CrossRefGoogle Scholar
  110. Williams, I. H., Martin, A. P., and Kelm, M. 1987. The phenology of the emergence of brassica pod midge (Dasineura brassicae Winn.) and its infestation of winter oil-seed rape (Brassica nupus L.). J. Agric. Sci. Cambridge 108:579–589.Google Scholar
  111. Witzgall, P., Kirsch, P., and Cork, A. 2010. Sex pheromones and their impact on pest management. J. Chem. Ecol. 36:80–100.PubMedCrossRefGoogle Scholar
  112. Wu, Y. Q., Jiang, Y. L., and Duan, Y. 2008. Monitoring methods of wheat blossom midge. Henan J. Agric. Sci. 8:98–100.Google Scholar
  113. Yukawa, J. 2000. Synchronization of gallers with host plant phenology. Popul. Ecol. 42:105–113.CrossRefGoogle Scholar
  114. Yukawa, J., and Rohfritsch, O. 2005. Biology and Ecology of Gall-inducing Cecidomyiidae (Diptera), pp. 273–304, in A. Raman, C. W. Schaefer and T. M. Withers (eds.), Biology, Ecology, and Evolution of Gall-inducing Arthropods, Science Publishers Inc., Enfield, NH, USA.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • David R. Hall
    • 1
    Email author
  • Lakmali Amarawardana
    • 1
  • Jerry V. Cross
    • 2
  • Wittko Francke
    • 3
  • Tina Boddum
    • 4
  • Ylva Hillbur
    • 4
  1. 1.Natural Resources InstituteUniversity of Greenwich, Chatham MaritimeKentUK
  2. 2.East Malling ResearchKentUK
  3. 3.Institute of Organic ChemistryUniversity of HamburgHamburgGermany
  4. 4.Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden

Personalised recommendations