Advertisement

Journal of Chemical Ecology

, Volume 37, Issue 12, pp 1314–1322 | Cite as

Effects of Cyanogenic Plants on Fitness in Two Host Strains of the Fall Armyworm (Spodoptera frugiperda)

  • Mirian M. Hay-RoeEmail author
  • Robert L. Meagher
  • Rodney N. Nagoshi
Article

Abstract

The generalist moth, Spodoptera frugiperda (J. E. Smith) consists of two genetic subgroups (host strains) that differ in their distribution among host plant species. The corn strain prefers crop plants such as corn, sorghum, and cotton, while the rice strain is found in small grasses such as Cynodon spp. and rice. Little is known about the physiological factors that drive this host preference. Here, we report a feeding study with natural host plants and an artificial diet containing cyanide. We found that corn, two Cynodon spp. (bermudagrass C. dactylon (L.) Persoon, ‘NuMex Sahara’, and stargrass C. nlemfuensis var. nlemfuensis Vanderyst, ‘Florona’), and a hybrid between bermudagrass and stargrass, ‘Tifton 85’, exhibited differences in the concentration of the cyanogenic precursors or cyanogenic potential (HCNp) and the release of hydrogen cyanide per unit time or cyanogenic capacity (HCNc). Corn plants released low levels of hydrogen cyanide, while stargrass had greater HCNp/HCNc than bermudagrass and ‘Tifton 85’. Feeding studies showed that corn strain larvae experienced higher mortality than the rice strain when fed stargrass or artificial diet supplemented with cyanide. Also, corn strain larvae excreted higher levels of cyanogenic compounds than the rice strain when fed Cynodon spp. These differences in excretion suggest potential disparities in cyanide metabolism between the two strains. We hypothesize that differences in the susceptibility to cyanide levels in various host plants could play a role in driving strain divergence and what appears to be the incipient speciation of this moth.

Key Words

Life histories Cyanogenic glycosides Cyanogenesis Cynodon spp. Plant-insect interaction Spodoptera frugiperda 

Notes

Acknowledgements

We thank J. Nation and R. Mankin for critical comments on early revisions of the manuscript, A. Rowley for plant maintenance, and N. Fieleke for maintenance of the insect colonies. The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the United States Department of Agriculture or the Agricultural Research Service of any product or service to the exclusion of others that may be suitable.

References

  1. Aguilera, J. M., Ramos, N., and Herrera, R. 1982a. Comportamiento del potencial cianogénico en pasto estrella (Cynodon nlemfuensis). I. Influencia del Nitrógeno, la edad y la estación. Rev. Salud Anim. 4:91–100.Google Scholar
  2. Aguilera, J. M., Ramos, N., and Herrera, R. 1982b. Comportamiento del potencial cianogénico en pasto estrella (Cynodon nlemfuensis). II. Influencia del tiempo del corte. Rev. Salud Anim. 4:101–110.Google Scholar
  3. Aguilera, J. M., Ramos, N., and Herrera, R. 1984. Comportamiento del potencial cianogénico en pasto estrella (Cynodon nlemfuensis). III. Efecto de la sombra. Rev. Salud Anim. 6:555–560.Google Scholar
  4. Aguilera, J. M., Ramos, N., and Herrera, R. S. 1985. Comportamiento del potencial cianogénico en pasto estrella (Cynodon nlemfuensis). IV. Distribución de cianuro entre hoja y tallo. Rev. Salud Anim. 7:183–187.Google Scholar
  5. Alonso-Amellot, M. E. and Oliveros-Bastidas, A. 2005. Kinetics of the natural evolution of hydrogen cyanide in plants in neotropical Pteridium arachnoideum and its ecological significance. J. Chem. Ecol. 31:315–331.CrossRefGoogle Scholar
  6. Ballhorn, D. J., Lieberei, R., and Ganzhorn, J. U. 2005. Plant cyanogenesis of Phaseolus lunatus and its relevance for herbivore-plant interactions: the importance of quantitative data. J. Chem. Ecol. 31:1445–1473.PubMedCrossRefGoogle Scholar
  7. Ballhorn, D. J. Schiwy, S., Jensen, M., and Heil, M. 2008. Quantitative variability of direct chemical defense in primary and secondary leaves of lima bean (Phaseolus lunatus) and consequences for a natural herbivore J. Chem. Ecol. 34:1298–1301.PubMedCrossRefGoogle Scholar
  8. Ballhorn, D. J., Pietrowski, A., and Lieberei, R., 2010a. Direct trade-off between cyanogenesis and resistance to a fungal pathogen in lima bean (Phaseolus lunatus L.). J. Ecol. 98: 226–236.CrossRefGoogle Scholar
  9. Ballhorn, D. J., Kautz, S., and Lieberei, R. 2010b. Comparing responses of generalist and specialist herbivores to various cyanogenic plant features. Entom. Exp. Appl. 134:245–259.CrossRefGoogle Scholar
  10. Ballhorn, D. J. 2011. Constraints of simultaneous resistance to a fungal pathogen and an insect herbivore in lima bean (Phaseolus lunatus L.) J. Chem. Ecol. 37:141–144.PubMedCrossRefGoogle Scholar
  11. Brattsten, L. B., Samuelian, J. H., Long, K.Y., Kincaid, S. A., and Evans, C. K. 1983. Cyanide as a feeding stimulant for the southern armyworm, Spodoptera eridania. Ecol. Entomol. 8:125–132.CrossRefGoogle Scholar
  12. Brimer, L., Christensen, S. B., Mølgaard, P., and Nartey, F. 1983. Determination of cyanogenic compounds by thin-layer chromatography. 1. A densitometric method for quantification of cyanogenic glycosides, employing enzyme preparations (β-glucuronidase) from Helix pomatia and picrate-impregnated ion-exchange sheets. J. Agric. Food Chem. 31:789–793.CrossRefGoogle Scholar
  13. Brinker, A. M. and Seigler, D. S. 1989. Methods for the detection and quantitative determination of cyanide in plant materials. Phytochem. Bull. 21:24–31.Google Scholar
  14. Brünnich, J. C. 1903. Hydrocyanic acid in fodder-plants. J. Chem. Soc. Trans. 83:788–796.CrossRefGoogle Scholar
  15. Burton, G. W. 2001. Tifton 85 bermudagrass—early history of its creation, selection, and evaluation. Crop. Sci. 41:5–6.CrossRefGoogle Scholar
  16. Conn, E. E. 1981. Cyanogenic glycosides, pp. 479–499, in Conn, E. E., (ed.). The Biochemistry of Plants. A Comprehensive Treatise, Vol 7, Secondary Plant Products. Academic Press, New York.Google Scholar
  17. Cooper-Driver, G., Finch, S., Swain, T., and Bernays, E. 1977. Seasonal variation in secondary plants compounds in relation to the palatability of Pteridium aquilinum. Biochem. Syst. Ecol. 5:177–183.CrossRefGoogle Scholar
  18. Engler-Chaouat, H. S. and Gilbert, L. E. 2007. De novo synthesis vs. sequestration: Negatively correlated metabolic traits and the evolution of host plant specialization in cyanogenic butterflies. J. Chem. Ecol. 33:25–42.PubMedCrossRefGoogle Scholar
  19. Feigl, F. and Anger, V. 1966. Replacement of benzidine by copper ethylacetoacetate and tetra base as spot-test reagent for hydrogen cyanide and cyanogen. Analyst 91:282–284.PubMedCrossRefGoogle Scholar
  20. Franzl, S. and Naumann, C. M. 1985. Cuticular cavities: Storage chambers for cyanoglucoside-containing defensive secretions in larvae of a zygaenid moth. Tissue Cell 17:267–278.PubMedCrossRefGoogle Scholar
  21. Fry, W. E. and Munch, D. C. 1975. Hydrogen cyanide detoxification by Gloeocercospora sorghi. Physiol. Plant Pathol. 7:23–33.CrossRefGoogle Scholar
  22. Gebrehiwot, L. and Beuselinck, P. R. 2001. Seasonal variations in hydrogen cyanide concentrations of three Lotus species. Agron. J. 93:603–608.CrossRefGoogle Scholar
  23. Georgiadis, N. J. and Mcnaughton, S. J. 1988. Interactions between grazers and a cyanogenic grass, Cynodon plectostachyus. Oikos 51:343–350.CrossRefGoogle Scholar
  24. Gleadow, R. M. and Woodrow, I. E. 2002. Constraints on effectiveness of cyanogenic glycosides in herbivore defense. J. Chem. Ecol. 28:1301–1313.PubMedCrossRefGoogle Scholar
  25. Goodger, J. Q. D., Choo, T. Y. S., and Woodrow, I. E. 2007. Ontogenetic and temporal trajectories of chemical defence in a cyanogenic eucalypt. Oecologia 153:799–808.PubMedCrossRefGoogle Scholar
  26. Guy, R. H., Leppla, N. C., Rye, J. R., Green, C. W. Barette, S. L., and Hollien, K. A. 1985. Trichoplusia ni. pp. 487-494, in Singh, P. and Moore, R. F. (eds.). Handbook of insect rearing, vol. 2. Elsevier, Amsterdam.Google Scholar
  27. Harborne, J. B. 1982. Introduction to Ecological Biochemistry. 2nd ed. Academic Press, New York. 278 p.Google Scholar
  28. Hay-Roe, M. M. 2004. Comparative processing of cyanogenic glycosides and a novel cyanide inhibitory enzyme in Heliconius butterflies (Lepidoptera: Nymphalidae: Heliconiinae). Ph. D. dissertation, University of Florida, Gainesville.Google Scholar
  29. Hay-Roe, M. M. and Nation, J. 2007. Spectrum of cyanide toxicity and allocation in Heliconius erato and Passiflora host plants. J. Chem. Ecol. 33:319–329.PubMedCrossRefGoogle Scholar
  30. Jaroszewski, J. W., Olafsdottr, E. S., Wellendorph, P., Christensen, J., Franzyk, H., Somanadhan, B., Budnik, B. A., Jørgensen, L. B., and Clausen, V. 2002. Cyanohydrin glycosides of Passiflora: distribution pattern, a saturated cyclopentene derivative from P. guatemalensis, and formation of pseudocyanogenic α-hydroxyamides as isolation artifacts. Phytochemistry 59:501–511.CrossRefGoogle Scholar
  31. Jones, D. A. 1988. Cyanogenesis in animal/plant interactions. pp. 151-170, in Evered D. and Harnett S. (eds). Cyanide Compounds in Biology. Ciba Foundation Symposium 140, J. Wiley.Google Scholar
  32. Jones, D. A. 1998. Why are so many food plants cyanogenic? Phytochemistry 47:155–162.PubMedCrossRefGoogle Scholar
  33. Jones, D. A. and Rammani, A. D. 1985. Altruism and movement of plants. Evol. Theor. 7:143–148.Google Scholar
  34. Kaplan, M. A., Figuereido, M. R., and Gottlieb, O. R. 1983. Variation in cyanogenesis in plants with season and insect pressure. Biochem. Syst. Ecol. 11:367–370.CrossRefGoogle Scholar
  35. Lambert, J. L., Ramasamy, J., and Paukstells, J. V. 1975. Stable reagents for the colorimetric determination of cyanide by modified König reactions. Anal. Chem. 47:916–918.CrossRefGoogle Scholar
  36. Levy, H. C., Garcia-Maruniak, A., and Maruniak, J. E. 2002. Strain identification of Spodoptera frugiperda (Lepidoptera : Noctuidae) insects and cell line: Pcr-Rflp of Cytochrome Oxidase C Subunit I Gene. Fla. Entomol. 85:186–190.CrossRefGoogle Scholar
  37. Lieberei, R. 1988. Relationship of cyanogenic capacity (HCN-c) of the rubber tree Hevea brasiliensis to susceptibility to Microcyclus ulei, the agent causing South American leaf blight. J. Phytopath. 122:54–67.CrossRefGoogle Scholar
  38. Lu, Y.-J. and Adang, M. J. 1996. Distinguishing fall armyworm (Lepidoptera: Noctuidae) strains using a diagnostic mitochondrial DNA marker. Fla. Entomol. 79:48–55.CrossRefGoogle Scholar
  39. Luginbill, P. 1928. The fall armyworm. USDA Tech. Bull. 34:92.Google Scholar
  40. Mahmoodzadeh, H. 2010. Allelopathic Plants 23. Cynodon dactylon (L.) Pers. Allelopath. J. 25:227–238.Google Scholar
  41. Meagher, R. L., Mislevy, P., and Nagoshi, R. N. 2007. Caterpillar (Lepidoptera: Noctuidae) feeding on pasture grasses in central Florida. Fla. Entomol. 90:295–303.CrossRefGoogle Scholar
  42. Nagoshi, R. N. and Meagher, R. L. 2003. FR tandem-repeat sequence in fall armyworm (Lepidoptera : Noctuidae) host strains. Ann. Entomol. Soc. Am. 96:329–335.CrossRefGoogle Scholar
  43. Nagoshi, R. N., Adamczyk, J. J., Meagher, R. L., Gore, J., and Jackson, R. 2007. Using stable isotope analysis to examine fall armyworm (Lepidoptera: Noctuidae) host strains in a cotton habitat. J. Econ. Entomol. 100:1569–1576.PubMedCrossRefGoogle Scholar
  44. Nahrstedt, A. 1988. Cyanogenesis and the role of cyanogenic compounds in insects, pp. 131-150, in D. Evered and S. Harnett (eds). Cyanide Compounds in Biology, Ciba Foundation Symposium, Wiley, Chichester.Google Scholar
  45. Pashley, D. P. 1988a. Quantitative genetics, development, and physiological adaptation in host strains of fall armyworm. Evolution 42:93–102.CrossRefGoogle Scholar
  46. Pashley, D. P. 1988b. Current status of fall armyworm host strains. Fla. Entomol. 71:227–234.CrossRefGoogle Scholar
  47. Pashley, D. P., Quisenberry, S. S., and Jamjanya, T. 1987. Impact of fall armyworm (Lepidoptera: Noctuidae) host strains on the evaluation of Bermuda grass resistance. J. Econ. Entomol. 80:1127–1130.Google Scholar
  48. Pashley, D. P., Hardy, T. N., and Hammond, A. M. 1995. Host effects on development and reproductive traits in fall armyworm strains (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 88:748–755.Google Scholar
  49. Pederson, G. A. and Brink, G. E. 1998. Cyanogenesis effect on insect damage to seedling white clover in a bermudagrass sod. Agron J. 90:208–210.CrossRefGoogle Scholar
  50. Quisenberry, S. S. and Whitford, F. 1988. Evaluation of bermudagrass resistance to fall armyworm (Lepidoptera: Noctuidae): Influence of host strain and dietary conditioning. J. Econ. Entomol. 81:1463–1468.Google Scholar
  51. Solomonson, L. P. 1974. Regulation of nitrate reductase by NADH and cyanide. Biochim. Biophys. Acta 334:297–308.Google Scholar
  52. Sparks, A. N. 1979. A review of the biology of the fall armyworm. Fla. Entomol. 62:82–87.CrossRefGoogle Scholar
  53. Whitford, F., Quisenberry, S. S., Riley, T. J., and Lee, J. W. 1988. Oviposition preference, mating compatibility, and development of two fall armyworm strains. Fla. Entomol. 71:234–243.CrossRefGoogle Scholar
  54. Zagrobelny, M., Bak, S., Rasmussen, A. V., Jørgensen, B., Naumann, C. M., and Møller, B. L. 2004. Cyanogenic glucosides and plant-insect interactions. Phytochemistry 65:293–306.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC (outside the USA) 2011

Authors and Affiliations

  • Mirian M. Hay-Roe
    • 1
    Email author
  • Robert L. Meagher
    • 1
  • Rodney N. Nagoshi
    • 1
  1. 1.Behavior and Biocontrol UnitUSDA, ARS, CMAVEGainesvilleUSA

Personalised recommendations