Advertisement

Journal of Chemical Ecology

, Volume 37, Issue 11, pp 1263–1275 | Cite as

Cooperation, Conflict, and the Evolution of Queen Pheromones

  • Sarah D. KocherEmail author
  • Christina M. Grozinger
Review Article

Abstract

While chemical communication regulates individual behavior in a wide variety of species, these communication systems are most elaborated in insect societies. In these complex systems, pheromones produced by the reproductive individuals (queens) are critical in establishing and maintaining dominant reproductive status over hundreds to thousands of workers. The proximate and ultimate mechanisms by which these intricate pheromone communication systems evolved are largely unknown, though there has been much debate over whether queen pheromones function as a control mechanism or as an honest signal facilitating cooperation. Here, we summarize results from recent studies in honey bees, bumble bees, wasps, ants and termites. We further discuss evolutionary mechanisms by which queen pheromone communication systems may have evolved. Overall, these studies suggest that queen-worker pheromone communication is a multi-component, labile dialog between the castes, rather than a simple, fixed signal-response system. We also discuss future approaches that can shed light on the proximate and ultimate mechanisms that underlie these complex systems by focusing on the development of increasingly sophisticated genomic tools and their potential applications to examine the molecular mechanisms that regulate pheromone production and perception.

Key Words

Social insects Pheromones Honey bees Chemical communication Behavior Genomics Evolution 

Notes

Acknowledgements

We thank Andrew Barron, Laurent Keller, Amy Toth, Etya Ansalem, Jim Hunt, Doug Yu, members of the Grozinger lab, and two anonymous reviewers for helpful discussions and constructive feedback that greatly improved the manuscript. The development of this review was supported by an NSF Doctoral Dissertation Improvement Grant to SDK and NSF CAREER grant to CMG.

References

  1. Abdelkrim, J., Robertson, B., Stanton, J., and Gemmell, N. 2009. Fast, cost-effective development of species-specific microsatellite markers by genomic sequencing. Biotechniques 46:185–192.PubMedCrossRefGoogle Scholar
  2. Alaux, C., Boutout, M., Jaisson, P., and Hefetz, A. 2007. Reproductive plasticity in bumblebee workers (Bombus terrestris) - reversion from fertility to sterility under queen influence. Behav. Ecol. Sociobiol. 62:213–222.CrossRefGoogle Scholar
  3. Alaux, C., Folschweiller, M., McDonnell, C., Beslay, D., Cousin, M., Dussaubat, C., Brunet, J. L., and le Conte, Y. 2011. Pathological effects of the microsporidium Nosema ceranae on honey bee queen physiology (Apis mellifera). J. Invert. Path. 106:380–385.CrossRefGoogle Scholar
  4. Alaux, C., Jaisson, P., and Hefetz, A. 2004. Queen influence on worker reproduction in bumblebees (Bombus terrestris) colonies. Insectes Sociaux 51:287–293.CrossRefGoogle Scholar
  5. Alaux, C., le Conte, Y., Adams, H. A., Rodriguez-zas, S., Grozinger, C. M., Sinha, S., and Robinson, G. E. 2009. Regulation of brain gene expression in honey bees by brood pheromone. Genes Brain Behav 8:309–319.PubMedCrossRefGoogle Scholar
  6. Alaux, C., Maisonnasse, A., and le Conte, Y. 2010. Pheromones in a superorganism: From gene to social regulation. Vitamins and Homones 83:401–423.CrossRefGoogle Scholar
  7. Amsalem, E. and Hefetz, A. 2010. The appeasement effect of sterility signaling in dominance contests among Bombus terrestris workers. Behav. Ecol. Sociobiol. 64:1685–1694.CrossRefGoogle Scholar
  8. Amsalem, E., Twele, R., Francke, W., and Hefetz, A. 2009. Reproductive competition in the bumble bee Bombus terrestris: Do workers advertise sterility? Proc. Roy. Soc. B. 276:1295–1304.Google Scholar
  9. Ayasse, M., Engels, W., Hefetz, A., Tengo, J., Luibke, G., and Francke, W. 1993. Ontogenetic patterns of volatiles identified in Dufour's gland extracts from queens and workers of the primitively eusocial halictine bee, Lasioglossum malachurum (Hymenoptera: Halictidae). Insect Soc. 40:1–18.CrossRefGoogle Scholar
  10. Ayasse, M., Marlovits, T., Tengo, J., Taghizadeh, T., and Francke, W. 1995. Are there pheromonal dominance signals in the bumblebee Bombus hypnorum (Hymenoptera, Apidae)? Apidologie 26:163–180.CrossRefGoogle Scholar
  11. Ayasse, M., Engels, W., Lübke, G., Taghizadeh, T., and Francke, W. 1999. Mating expenditures reduced via female sex pheromone modulation in the primitively eusocial halictine bee, Lasioglossum (Evylaeus) malachurum (Hymenoptera: Halictidae). Behav. Ecol. Sociobiol. 45:95–106.CrossRefGoogle Scholar
  12. Bardwell, L. 2005. A walk-through of the yeast mating pheromone response pathway. Peptides 26:339–350.PubMedCrossRefGoogle Scholar
  13. Beggs, K. T., Glendining, K. A., Marechal, N. M., Vergoz, V., Nakamura, I., Slessor, K. N., and Mercer, A. R. 2007. Queen pheromone modulates brain dopamine function in worker honey bees. Proc. Natl. Acad. Sci. USA 104:2460–2464.PubMedCrossRefGoogle Scholar
  14. Beggs, K. T. and Mercer, A. R. 2009. Dopamine receptor activation by honey bee queen pheromone. Curr. Biol. 19:1206–1209.PubMedCrossRefGoogle Scholar
  15. Belles, X. 2010. Beyond Drosophila: RNAi in vivo and functional genomics in insects. Annu. Rev. Entomol. 55:111–128.PubMedCrossRefGoogle Scholar
  16. Bergstrom, C. and Lachmann, M. 1998. Signaling among relatives. III. Talk is cheap. Proc. Natl. Acad. Sci. USA 95:5100–5105.PubMedCrossRefGoogle Scholar
  17. Beshers, S. N. and Fewell, J. H. 2001. Models of division of labor in social insects. Annu. Rev. Entomol. 46:413–440.PubMedCrossRefGoogle Scholar
  18. Bhadra, A., Mitra, A., Suiata, Deshpande, S. A., Chandrasekhar, K., Naoik, D. G., Hefetz, A., and Gadagkar, R. 2010. Regulation of Reproduction in the Primitively Eusocial Wasp Ropalidia marginata: on the Trail of the Queen Pheromone. J. Chem. Ecol 36:424–431.PubMedCrossRefGoogle Scholar
  19. Blum, M. G. 1969. Alarm pheromones. Annu. Rev. Ent. 14:57–80.CrossRefGoogle Scholar
  20. Blum, M. G. 1996. Semiochemical parsimony in the Arthropoda. Annu. Rev. Entomol. 41:353–374.PubMedCrossRefGoogle Scholar
  21. Bonasio, R., Zhang, G., Ye, C., Mutti, N. S., Fang, X., Qin, N., Donahue, G., Yang, P., Li, Q., Li, C., Zhang, P., Huang, Z., Berger, S. L., Reinberg, D., Wang, J., and Liebig, J. 2010. Genomic comparison of the ants Camponotus floridanus and Harpegnathos saltator. Science 329:1068–1071.PubMedCrossRefGoogle Scholar
  22. Bonavita-Cougourdan, A., Theraulaz, G., Bagneres, A. G., Roux, M., Pratte, M., Provost, E., and Clement, J. L. 1991. Cuticular hydrocarbons, social-organization and ovarian development in a Polistine wasp – Polistes dominulus christ. Comp. Biochem. Physiol. B 100:667–680.CrossRefGoogle Scholar
  23. Brady, S., Sipes, S., Pearson, A., and Danforth, B. 2006. Recent and simultaneous origins of eusociality in halictid bees. Proc. Roy. Soc. B. 273:1643–1649.CrossRefGoogle Scholar
  24. Brennan, P. and Zufall, F. 2006. Pheromonal communication in vertebrates. Nature 444:308–315.PubMedCrossRefGoogle Scholar
  25. Brockmann, A., Dietz, D., Spaethe, J., and Tautz, J. 2006. Beyond 9-ODA: Sex pheromone communication in the European honey bee Apis mellifera. J. Chem. Ecol. 32:657–667.PubMedCrossRefGoogle Scholar
  26. Butts, D. P., Camann, M. A., and Espelie, K. E. 1995. Workers and queens of the European hornet Vespa crabro have colony-specific cuticular hydrocarbon profiles (Hymenoptera, Vespidae). Insectes Sociaux 42:45–55.CrossRefGoogle Scholar
  27. Crawford, V. P. and SOBEL, J. 1982. Strategic information transmission. Econometrica 50:1431–1451.CrossRefGoogle Scholar
  28. Crewe, R. and Velthuis, H. 1980. False queens: A consequence of mandibular gland signals in worker honeybees. Naturwissenschaften 67:467–469.CrossRefGoogle Scholar
  29. Cuvillier-Hot, V., Cobb, M., Malosse, C., and Peeters, C. 2001. Sex, age and ovarian activity affect cuticular hydrocarbons in diacamma ceylonense, a queenless ant. J. Insect Physiol. 47:485–493.PubMedCrossRefGoogle Scholar
  30. Cuvillier-Hot, V., Lenoir, A., Crewe R., Malosse C., and Peeters, C. 2004a. Fertility signalling and reproductive skew in queenless ants. Anim. Behav. 68:1209–1219.Google Scholar
  31. Cuvillier-Hot, V., Lenoir A., and Peeters, C. 2004b. Reproductive monopoly enforced by sterile police workers in a queenless ant. Behav. Ecol. 15:970–975.Google Scholar
  32. Dahbi, A. and Lenoir, A. 1998. Queen and colony odour in the multiple nest ant species, Cataglyphis iberica (Hymenoptera, Formicidae). Insectes Sociaux 45:301–313.CrossRefGoogle Scholar
  33. Dapporto, L., Sledge, F. W., and Turillazzi, S. 2005. Dynamics of cuticular chemical profiles of polistes dominulus workers in orphaned nests (hymenoptera, vespidae). J. Insect Physiol. 51:969–973.PubMedCrossRefGoogle Scholar
  34. D'Ettore, P., Heinze, E., Schulz, C., Francke, W., and Ayasse, M. 2004. Does she smell like a queen? Chemoreception of a cuticular hydrocarbon signal in the ant pachycondyla inversa. J. Exp. Biol. 207:1085–1091.CrossRefGoogle Scholar
  35. de Biseau, J. C., Passera, L., Daloze, D., and Aron, S. 2004. Ovarian activity correlates with extreme changes in cuticular hydrocarbon profile in the highly polygynous ant, Linepithema humile. J. Insect Physiol. 50:585–593.PubMedCrossRefGoogle Scholar
  36. de Hazan, M., Lensky, Y., and Cassier, P. 1989. Effects of queen honeybee (Apis mellifera L.) ageing on her attractiveness to workers. Comp. Biochem. Physiol. A. 93:777–783.CrossRefGoogle Scholar
  37. Dietemann, V., Peeters, C., Liebig, J., Thivet, V., and Holldobler, B. 2003. Cuticular hydrocarbons mediate discrimination of reproductives and nonreproductives in the ant Myrmecia gulosa. Proc. Natl. Acad. Sci. USA 100:10341–10346.PubMedCrossRefGoogle Scholar
  38. Dombroski, T., Simões, Z., and Bitondi, M. 2003. Dietary dopamine causes ovary activation in queenless Apis mellifera workers. Apidologie 34:281–289.CrossRefGoogle Scholar
  39. Dor, R., Katzav-Gozansky, T., and Hefetz, A. 2005. Dufour’s gland pheromone as a reliable fertility signal among honeybee (Apis mellifera) workers. Behav. Ecol. Sociobiol. 58:270–276.CrossRefGoogle Scholar
  40. Endler, A., Liebig, J., Schmitt, T., Parker, J. E., Jones, G. R., Schreier, P., and Holldobler, B. 2004. Surface hydrocarbons of queen eggs regulate worker reproduction in a social insect. Proc. Natl. Acad. Sci. USA 101:2945–2950.PubMedCrossRefGoogle Scholar
  41. Espelie, K. E., Gamboa, G. J., Grudzien, T. A., and Bura, E. A. 1994. Cuticular hydrocarbons of the paper wasp, Polistes fuscatus - a search for recognition pheromones. J. Chem. Ecol. 20:1677–1687.CrossRefGoogle Scholar
  42. Fletcher, D. and Blum, M. 1981. Pheromonal control of dealation and oogenesis in virgin queen fire ants. Science 212:73–75.PubMedCrossRefGoogle Scholar
  43. Fletcher, D. J. C. and Ross, K. G. 1985. Regulation of reproduction in eusocial hymenoptera. Annu. Rev. Entomol. 30:319–343.CrossRefGoogle Scholar
  44. Fussnecker, B., Mckenzie, A., and Grozinger, C.M. in press. cGMP modulates responses to queen mandibular pheromone in worker honey bees. J. Comp. Phys. A. Google Scholar
  45. Gadagkar, R. 1997. The evolution of communication and the communication of evolution: The case of the honey bee queen pheromone, pp. 375–395, in M. LEHRER (ed.), Orientation and Communication in Arthropds. Birkhauser, Basel, Switzerland.CrossRefGoogle Scholar
  46. Gibson, G. 2003. Microarray analysis: Genome-scale hypothesis scanning. PLoS Biol. 1:E15.PubMedCrossRefGoogle Scholar
  47. Glancey, B. M., Rocca, J. R., Lofgren, C. S., and Tumlinson, J. H. 1984. Field tests with synthetic components of the queen recognition pheromone of the red imported fire ant, Solenopsis invicta. Sociobiology 9:19.Google Scholar
  48. Gobin, B., Billen, J., and Peeters, C. 1999. Policing behaviour towards virgin egg layers in a polygynous ponerine ant. Anim. Behav. 58:000–000.CrossRefGoogle Scholar
  49. Gould, F., Estock, M., Hillier, N. K., Powell, B., Groot, A. T., Ward, C. M., Emerson, J. L., Schal, C., and Vickers, N. J. 2010. Sexual isolation of male moths explained by a single pheromone response QTL containing four receptor genes. Proc. Natl. Acad. Sci. USA 107:8660–8665.PubMedCrossRefGoogle Scholar
  50. Grozinger, C., Sharabash, N., Whitfield, C., and Robinson, G. 2003. Pheromone-mediated gene expression in the honey bee brain. Proc. Natl. Acad. Sci. USA 100:14519–14525.PubMedCrossRefGoogle Scholar
  51. Hamilton, W. 1964. The genetical evolution of social behaviour. I. J Theor Biol 7:1–6.CrossRefGoogle Scholar
  52. Hannonen, M., Sledge, M. F., Turillazzi, S., and Sundstrom, L. 2002. Queen reproduction, chemical signalling and worker behaviour in polygyne colonies of the ant Formica fusca. Anim. Behav. 64:477.CrossRefGoogle Scholar
  53. Hartmann, A., D'Ettorre, P., Jones, G. R., and Heinze, J. 2005. Fertility signaling–the proximate mechanism of worker policing in a clonal ant. Naturwissenschaften 92:282–286.PubMedCrossRefGoogle Scholar
  54. Heinze, J., Stengl, B., and Sledge, M. F. 2002. Worker rank, reproductive status and cuticular hydrocarbon signature in the ant, pachycondyla cf. Inversa. Behav Ecol. Sociobiol. 52:59–65.CrossRefGoogle Scholar
  55. Heinze, J. and D'Ettorre, P. 2009. Honest and dishonest communication in social Hymenoptera. J. Exp. Biol. 212:1775–1779.PubMedCrossRefGoogle Scholar
  56. HGSC 2006. Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443:931–949.CrossRefGoogle Scholar
  57. Hines, H., Hunt, J., O'Conner, T., Gillespie, J., and Cameron, S. 2007. Multigene phylogeny reveals eusociality evolved twice in vespid wasps. Proc. Natl. Acad. Sci. USA 104:3295–3299.PubMedCrossRefGoogle Scholar
  58. Hölldobler, B. 1984. Evolution of insect communication, pp. 349–377, in T. Lewis (ed.), insect communication. Academic, London.Google Scholar
  59. Hölldobler, B. and Michener, C. D. 1980. Mechanisms of identification and discrimination in social hymenoptera, pp. 35–58, in H. Markl (ed.), Evolution of Social Behaviour: Hypotheses and Empirical tests, (Dahlem Konferenzen). Verlag Chemie GmbH, Weinheim.Google Scholar
  60. Holman, L. 2010. Queen pheromones: The chemical crown governing insect social life. Comm. Int. Biol. 3:558–560.CrossRefGoogle Scholar
  61. Holman, L., Dreier, S., and D'Ettorre, P. 2010a. Selfish strategies and honest signalling: Reproductive conflicts in ant queen associations. Proc. Biol. Sci. 277:2007–2015.PubMedCrossRefGoogle Scholar
  62. Holman, L., Jorgensen, C. G., Nielsen, J., and D'Ettorre, P. 2010b. Identification of an ant queen pheromone regulating worker sterility. Proc. Biol. Sci. 277:3793–3800.PubMedCrossRefGoogle Scholar
  63. Hoover, S. E., Keeling, C. I., Winston, M. L., and Slessor, K. N. 2003. The effect of queen pheromones on worker honey bee ovary development. Naturwissenschaften 90:477–480.PubMedCrossRefGoogle Scholar
  64. Hoover, S. E., Winston, M. L., and Oldroyd, B. P. 2005. Retinue attraction and ovary activation: Responses of wild type and anarchistic honey bees (Apis mellifera) to queen and brood pheromones. Behav. Ecol. Sociobiol. 59:278–284.CrossRefGoogle Scholar
  65. Howard, R. and Blomquist, G. 2005. Ecological, behavioral, and biochemical aspects of the insect hydrocarbons. Annu. Rev. Entom. 50:371–393.CrossRefGoogle Scholar
  66. Johnson, N. and Li, W. 2010. Understanding behavioral responses of fish to pheromones in natural freshwater environments. J. Comp. Phys. A.:1–11.Google Scholar
  67. Kardile, S. P. and Gadagkar, R. 2002. Docile sitters and active fighters in paper wasps: A tale of two queens. Naturwissenschaften 89:176–179.PubMedCrossRefGoogle Scholar
  68. Karlson, P. and Lüscher, M. 1959. ‘Pheromones’: A new term for a class of biologically active substances. Nature 183:55–56.PubMedCrossRefGoogle Scholar
  69. Katzav-Gozansky, T. 2006. The evolution of honeybee multiple queen-pheromones: A consequence of a queen-worker arms race? Braz. J. Morphol. Sci. 23:129.Google Scholar
  70. Katzav-Gozansky, T. Soroker, V. and Hefetz, A. 2002. Honeybees Dufour's gland idiosyncrasy of a new queen signal. Apidologie 33:525–537.Google Scholar
  71. Katzav-gozansky, T., Soroker, V. and Hefetz, A. 2003. Honeybee egg-laying workers mimic a queen signal. Insec Soc. 50:20–22.Google Scholar
  72. Katzav-gozansky, T., Boulay, R., Soroker, V., and Hefetz, A. 2006. Queen-signal modulation of worker pheromonal composition in honeybees. J. Comp. Physiol. 192:737–742.Google Scholar
  73. Katzav-Gozansky, T., Soroker, V., Hefetz, A., Cojocaru, M., Erdmann, D., and Francke, W. 1997. Plasticity of caste-specific dufour’s gland secretion in the honey bee (Apis mellifera L.). Naturwissenschaften 84:238–241.CrossRefGoogle Scholar
  74. Keeling, C., Slessor, K. N., Higo, H. A., and Winston, M. L. 2003. New components of the honey bee (Apis mellifera L.) queen retinue pheromone. Proc. Natl. Acad. Sci. USA 100:4486–4491.CrossRefGoogle Scholar
  75. Keller, L. 2009. Adaptation and the genetics of social behaviour. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 364:3209–3216.PubMedCrossRefGoogle Scholar
  76. Keller, L. and Nonacs, P. 1993. The role of queen pheromones in social insects: Queen control or queen signal? Anim. Behav. 45:787–794.CrossRefGoogle Scholar
  77. Kikuta, N. and Tsuji, K. 1999. Queen and worker policing in the monogynous and monandrous ant, Diacamma sp. Behav. Ecol. Sociobiol. 46:180–189.CrossRefGoogle Scholar
  78. Klobuchar, E. and Deslippe, R. 2002. A queen pheromone induces workers to kill sexual larvae in colonies of the red imported fire ant (Solenopsis invicta). Naturwissenschaften 89:302–304.PubMedCrossRefGoogle Scholar
  79. Kocher, SD, Tarpy, DR, and Grozinger, CM. 2010a. The effects of mating and instrumental insemination on honey bee flight behavior and gene expression. Insect Mol Biol. 19(2):153–162.Google Scholar
  80. Kocher, SD, Ayroles, JF, Stone, EA, and Grozinger, CM. 2010b. Natural variation in pheromone response correlates with reproductive traits and brain gene expression in worker honey bees. PLoS ONE 5(2):e9116.Google Scholar
  81. Kocher, S. D., Richard, F. J., Tarpy, D. R., and Grozinger, C. M. 2008. Genomic analysis of post-mating changes in the honey bee queen (Apis mellifera). BMC Genomics 9:232.PubMedCrossRefGoogle Scholar
  82. Kocher, S. D., Richard, F. J., Tarpy, D. R., and Grozinger, C. M. 2009. Queen reproductive state modulates pheromone production and queen-worker interactions in honeybees. Behav. Ecol. 20:1007–1014.CrossRefGoogle Scholar
  83. le Conte, Y. and Hefetz, A. 2008. Primer pheromones in social hymenoptera. Annu. Rev. Entomol. 53:523–542.PubMedCrossRefGoogle Scholar
  84. Ledoux, M., Winston, M. L., Higo, H. A., Keeling, C., Slessor, K. N., and le Conte, Y. 2001. Queen and pheromonal factors influencing comb constructionby simulated honey bee (Apis mellifera L.) swarms. Insectes Sociaux 48:14–20.CrossRefGoogle Scholar
  85. Liebig, J., Eliyahu, D., and Brent, C. S. 2009. Cuticular hydrocarbon profiles indicate reproductive status in the termite Zootermopsis nevadensis. Behav. Ecol. Sociobiol. 63:1799–1807.CrossRefGoogle Scholar
  86. Liebig, J., Peeters, J., Oldham, N., Markstadter, C., and Holldobler, B. 2000. Are variations in cuticular hydrocarbons of queens and workers a reliable signal of fertility in the ant Harpgenathos saltator? Proc. Natl. Acad. Sci. USA 97:4124–4131.PubMedCrossRefGoogle Scholar
  87. Lopez-Vaamonde, C., Brown, R., Lucas, E., Pereboom, J., Jordan, W., and Bourke, A. 2007. Effect of the queen on worker reproduction and new queen production in the bumble bee Bombus terrestris. Apidologie 38:171–180.CrossRefGoogle Scholar
  88. Malka, O., Karunker, I., Yeheskel, A., Morin, S., and Hefetz, A. 2009a. The gene road to royalty–differential expression of hydroxylating genes in the mandibular glands of the honeybee. FEBS J. 276:5481–5490.PubMedCrossRefGoogle Scholar
  89. Malka, O., Katzav-Gozansky, T., and Hefetz, A. 2009b. Uncoupling fertility from fertility-associated pheromones in worker honeybees (Apis mellifera). J. Insect Physiol. 55(3):205–209.PubMedCrossRefGoogle Scholar
  90. Malka, O., Shnieor, S., Hefetz, A., and Katzav-Gozansky, T. 2007. Reversible royalty in worker honeybees (Apis mellifera) under the queen influence. Behav. Ecol. Sociobiol. 61:465–473.CrossRefGoogle Scholar
  91. Malka, O., Shnieor, S., Katzav-Gozansky, T., and Hefetz, A. 2008. Aggressive reproductive competition among hopelessly queenless honeybee workers triggered by pheromone signaling. Naturwissenschaften 95:553–559.PubMedCrossRefGoogle Scholar
  92. Matsuura, K., Himuro, C., Yokoi, T., Yamamoto, Y., Vargo, E. L., and Keller, L. 2010. Identification of a pheromone regulating caste differentiation in termites. Proc. Natl. Acad. Sci. USA 107:12963–12968.PubMedCrossRefGoogle Scholar
  93. Melathopoulos, A. P., Winston, M. L., Pettis, J. S., and Pankiw, T. 1996. Effect of queen mandibular pheromone on initiation and maintenance of queen cells in the honey bee (Apis mellifera L.). Canadian Entomologist 128:263–272.CrossRefGoogle Scholar
  94. Michener, C. 1974. The Social Behavior of the Bees: A Comparative Study. Harvard University Press, Cambridge.Google Scholar
  95. Miller, M. B. and Bassler, B. L. 2001. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55:165–199.PubMedCrossRefGoogle Scholar
  96. Monnin, T. 2006. Chemical recognition of reproductive status in social insects. Annales Zoologici Fennici 43:515–530.Google Scholar
  97. Monnin, T. and Peeters, C. 1998. Monogyny and the regulation of worker mating in the queenless ant Dinoponera quadriceps. Anim. Behav. 55:299–306.PubMedCrossRefGoogle Scholar
  98. Moritz, R., Simon, U., and Crewe, R. 2000. Pheromonal contest between honeybee workers (Apis mellifera capensis). Naturwissenschaften 87:395–397.PubMedCrossRefGoogle Scholar
  99. Moritz, R. F. A., Crewe, R. M., and Hepburn, H. R. 2002. Queen avoidance and mandibular gland secretion of honeybee workers (Apis mellifera L.). Insectes Sociaux 49:86–91.CrossRefGoogle Scholar
  100. Moritz, R. F. A., Lattorff, H. M. G., and Crewe, R. M. 2004. Honeybee workers (Apis mellifera capensis) compete for producing queen-like pheromone signals. Proc. Roy. Soc. B. 271:S98–S100.CrossRefGoogle Scholar
  101. Nadeau, N. J. and Jiggins, C. D. 2010. A golden age for evolutionary genetics? Genomic studies of adaptation in natural populations. Trends Genet. 26:484–492.PubMedCrossRefGoogle Scholar
  102. Naumann, K., Winston, M. L., Slessor, K. N., Prestwich, G. D., and Webster, F. X. 1991. Production and transmission of honey-bee queen (Apis mellifera L.) mandibular gland pheromone. Behav. Ecol. Sociobiol. 29:321–332.CrossRefGoogle Scholar
  103. Niehuis, O., Bullesbach, J., Judson, A. K., Schmitt, T., and Gadau, J. 2010. Genetics of cuticular hydrocarbon differences between males of the parasitoid wasps Nasonia giraulti and Nasonia vitripennis. Heredity.Google Scholar
  104. Oldroyd, B. P. and Fewell, J. H. 2007. Genetic diversity promotes homeostasis in insect colonies. Trends Ecol Evol 22:408–413.PubMedCrossRefGoogle Scholar
  105. Oldroyd, B. P. and Fewell, J. H. 2008. Large fitness benefits from polyandry in the honey bee, Apis mellifera. Trends Ecol. Evol. 23:59–60.PubMedCrossRefGoogle Scholar
  106. Pankiw, T., Huang, Z. Y., Winston, M. L., and Robinson, G. E. 1998. Queen mandibular gland pheromone influences worker honey bee (Apis mellifera l.) foraging ontogeny and juvenile hormone titers. J Insect Physiol 44:685–692.PubMedCrossRefGoogle Scholar
  107. Peeters, C. 1993. Monogyny and polygyny in ponerine ants with or without queens. pp. 234–261 in L. Keller, editor. Queen Number and Sociality in Insects. Oxford University Press.Google Scholar
  108. Peeters, C., Monnin, T., and Malosse, C. 1999. Cuticular hydrocarbons correlated with reproductive status in a queenless ant. Proc. Roy. Soc. B. 266:1323–1327.CrossRefGoogle Scholar
  109. Pettis, J., Higo, H. A., Pankiw, T., and Winston, M. L. 1999. Queen rearing suppression in the honey bee - evidence for a fecundity signal. Insectes Sociaux 44.Google Scholar
  110. Pettis, J. S., Higo, H. A., Pankiw, T., and Winston, M. L. 1997. Queen rearing suppression in the honey bee - evidence for a fecundity signal. Insectes Sociaux 44:311–322.CrossRefGoogle Scholar
  111. Plettner, E., Otis, G. W., Wimalaratne, P. D. C., Winston, M. L., Slessor, K. N., Pankiw, T., and Punchihewa, P. W. K. 1997. Species- and caste-determined mandibular gland signals in honeybees (apis). J. Chem. Ecol. 23:363–377.CrossRefGoogle Scholar
  112. Plettner, E., Slessor, K. N., Winston, M. L., Robinson, G. E., and Page, Jr., R. E. 1993. Mandibular gland components and ovarian development as measures of caste differentiation in the honey bee (Apis mellifera L). J. Insect Physiol. 39:235–240.Google Scholar
  113. Ratnieks, F., Foster, K., and Wenseleers, T. 2005. Conflict resolution in insect societies. Annu. Rev. Entomol. 51:581.CrossRefGoogle Scholar
  114. Ratnieks, F. L. W. and Visscher, P. K. 1989. Worker policing in the honeybee. Nature 342:796–797.CrossRefGoogle Scholar
  115. Reeve, H. 1991. Polistes, in K. G. ROSS and R. Matthews (eds.), The Social Biology of Wasps. Cornell University Press, Ithaca, NY.Google Scholar
  116. Richard, F.J., Tarpy, D. R., and Grozinger, C. M. 2007. Effects of insemination quantity on honey bee queen physiology. PLoS ONE 2:e980.Google Scholar
  117. Röseler, P-F, andc van Honk, C.G.J.1990. Castes and reproduction in bumblebees. pp. 147–166 in: Engels, W (eds.): Social Insects, (An Evolutionary Approach to Castes and Reproduction), Springer Verlag, Berlin, Heidelberg.Google Scholar
  118. Roeseler, P. 1991. Reproductive competition during establishment. in ROSS, K. G., and MATTHEWS, R., (eds). The Social Biology of Wasps. Cornell University Press, Ithaca, NY.Google Scholar
  119. Ross, K. G. and Matthews, R. 1991. The Social Biology of Wasps. Cornell University Press, Ithaca.Google Scholar
  120. Sadd, B. M., Kube, M., Klages, S., Reinhardt, R., and Schmid-Hempel, P. 2010. Analysis of a normalised expressed sequence tag (EST) library from a key pollinator, the bumblebee Bombus terrestris. BMC Genomics 11:110.PubMedCrossRefGoogle Scholar
  121. Schwarz, M., Richards, M. H., and Danforth, B. N. 2007. Changing paradigms in insect social evolution: insights from halictine and allodapine bees. Annu. Rev. Entomol. 52:127–150.PubMedCrossRefGoogle Scholar
  122. Seeley, T. D. 1989. The honey bee colony as a superorganism. Am. Scientist 77:546–553.Google Scholar
  123. Sledge, M. and Boscaro, T. S. 2001. Cuticular hydrocarbons and reproductive status in the social wasp polistes dominulus. Behav. Ecol. Sociobiol. 49:401–409.CrossRefGoogle Scholar
  124. Slessor, K. N., Kaminski, L. A., King, G. G. S., Borden, J. H., and Winston, M. L. 1988. Semiochemical basis of the retinue response to queen honey bees. Nature 332:354–356.CrossRefGoogle Scholar
  125. Slessor, K. N., Winston, M. L., and le Conte, Y. 2005. Pheromone communication in the honeybee (Apis mellifera L.). J. Chem. Ecol. 31:2731–2745.PubMedCrossRefGoogle Scholar
  126. Smith, A. A., Holldober, B., and Liebig, J. 2009. Cuticular hydrocarbons reliably identify cheaters and allow enforcement of altruism in a social insect. Curr. Biol. 19:78–81.PubMedCrossRefGoogle Scholar
  127. Smith, C. D., Zimin, A., Holt, C., Abouheif, E., Benton, R., Cash, E., Croset, V., Currie, C. R., Elhaik, E., Elsik, C. G., Fave, M. J., Fernandes, V., Gadau, J., Gibson, J. D., Graur, D., Grubbs, K. J., Hagen, D. E., Helmkampf, M., Holley, J. A., Hu, H., Viniegra, A. S., Johnson, B. R., Johnson, R. M., Khila, A., Kim, J. W., Laird, J., Mathis, K. A., Moeller, J. A., Munoz-Torres, M. C., Murphy, M. C., Nakamura, R., Nigam, S., Overson, R. P., Placek, J. E., Rajakumar, R., Reese, J. T., Robertson, H. M., Smith, C. R., Suarez, A. V., Suen, G., Suhr, E. L., Tao, S., Torres, C. W., van Wilgenburg, E., Viljakainen, L., Walden, K. K., Wild, A. L., Yandell, M., Yorke, J. A., and Tsutsui, N. D. 2011a. Draft genome of the globally widespread and invasive argentine ant (Linepithema humile). Proc. Natl. Acad. Sci. USA 108:5673–5678.PubMedCrossRefGoogle Scholar
  128. Smith, C. R., Smith, C. D., Robertson, H. M., Helmkampf, M., Zimin, A., Yandell, M., Holt, C., Hu, H., Abouheif, E., Benton, R., Cash, E., Croset, V., Currie, C. R., Elhaik, E., Elsik, C. G., Fave, M. J., Fernandes, V., Gibson, J. D., Graur, D., Gronenberg, W., Grubbs, K. J., Hagen, D. E., Viniegra, A. S., Johnson, B. R., Johnson, R. M., Khila, A., Kim, J. W., Mathis, K. A., Munoz-Torres, M. C., Murphy, M. C., Mustard, J. A., Nakamura, R., Niehuis, O., Nigam, S., Overson, R. P., Placek, J. E., Rajakumar, R., Reese, J. T., Suen, G., Tao, S., Torres, C. W., Tsutsui, N. D., Viljakainen, L., Wolschin, F., and Gadau, J. 2011b. Draft genome of the red harvester ant Pogonomyrmex barbatus. Proc. Natl. Acad. Sci. USA 108:5667–5672.PubMedCrossRefGoogle Scholar
  129. Sramkova, A., Schulz, C., Twele, R., Francke, W., and Ayasse, M. 2008. Fertility signals in the bumblebee Bombus terrestris (Hymenoptera: Apidae). Naturwissenschaften 95:515–522.PubMedCrossRefGoogle Scholar
  130. Stapley, J., Reger, J., Feulner, P., Smadja, C., Galindo, J., Ekblom, R., Bennison, C., Ball, A., Beckerman, A., and Slate, J. 2010. Adaptation genomics: The next generation. Trends Ecol. Evol. Google Scholar
  131. Stinchcombe, J. R. and Hoekstra, H. E. 2008. Combining population genomics and quantitative genetics: Finding the genes underlying ecologically important traits. Heredity 100:158–170.PubMedCrossRefGoogle Scholar
  132. Strauss, K., Scharpenberg, H., Crewe, R. M., Glahn, F., Foth, H., and Moritz, R. F. A. 2008. The role of the queen mandibular gland pheromone in honeybees (Apis mellifera): Honest signal or suppressive agent? Behav. Ecol. Sociobiol. 62:1523–1531.CrossRefGoogle Scholar
  133. Suen, G., Teiling, C., Li, L., Holt, C., Abouheif, E., Bornberg-Bauer, E., Bouffard, P., Caldera, E. J., Cash, E., Cavanaugh, A., Denas, O., Elhaik, E., Fave, M. J., Gadau, J., Gibson, J. D., Graur, D., Grubbs, K. J., Hagen, D. E., Harkins, T. T., Helmkampf, M., Hu, H., Johnson, B. R., Kim, J., Marsh, S. E., Moeller, J. A., Munoz-Torres, M. C., Murphy, M. C., Naughton, M. C., Nigam, S., Overson, R., Rajakumar, R., Reese, J. T., Scott, J. J., Smith, C. R., Tao, S., Tsutsui, N. D., Viljakainen, L., Wissler, L., Yandell, M. D., Zimmer, F., Taylor, J., Slater, S. C., Clifton, S. W., Warren, W. C., Elsik, C. G., Smith, C. D., Weinstock, G. M., Gerardo, N. M., and Currie, C. R. 2011. The genome sequence of the leaf-cutter ant Atta cephalotes reveals insights into its obligate symbiotic lifestyle. PLoS Genetics 7:e1002007.PubMedCrossRefGoogle Scholar
  134. Syed, Z., Ishida, Y., Taylor, K., Kimbrell, D., and Leal, W. 2006. Pheromone reception in fruit flies expressing a moth's odorant receptor. Proc. Natl. Acad. Sci. USA 103:16538.PubMedCrossRefGoogle Scholar
  135. Symonds, M., Moussalli, A., and Elgar, M. 2009. The evolution of sex pheromones in an ecologically diverse genus of flies. Biol. J. Linnean Soc. 97:594–603.CrossRefGoogle Scholar
  136. Symonds, M. and Wertheim, B. 2005. The mode of evolution of aggregation pheromones in Drosophila species. J. Evol. Biol. 18:1253–1263.PubMedCrossRefGoogle Scholar
  137. Symonds, M. R. and Elgar, M. A. 2004. The mode of pheromone evolution: Evidence from bark beetles. Proc. Biol. Sci. 271:839–846.PubMedCrossRefGoogle Scholar
  138. Symonds, M. R. and Elgar, M. A. 2008. The evolution of pheromone diversity. Trends Ecol. Evol. 23:220–228.PubMedCrossRefGoogle Scholar
  139. Tentschert, J., Bestmann, H. J., and Heinze, J. 2002. Cuticular compounds of workers and queens in two leptothorax ant species – a comparison of results obtained by solvent extraction, solid sampling, and spme. Chemoecology 12:15–21.CrossRefGoogle Scholar
  140. Toth Al, VARALA K., Newman, T. C., Miguez F. E., HUTCHISON S. K., Willoughby, D. A., Simons J. F., EGHOLM M., HUNT, J. H., Hudson M. E., and ROBINSON G. E. 2007. Wasp gene expression supports an evolutionary link between maternal behavior and eusociality. Science 318:441–444.PubMedCrossRefGoogle Scholar
  141. Tsuji, K., Egashira, K., and Holldobler, B. 1999. Regulation of worker reproduction by direct physical contact in the ant Diacamma sp from Japan. Anim. Behav. 58:337–343.PubMedCrossRefGoogle Scholar
  142. van Wilgenburg, E., Symonds, M. R., and Elgar, M. A. 2011. Evolution of cuticular hydrocarbon diversity in ants. J. Evol. Biol.. doi: 10.1111/j.1420-9101.2011.02248.x.
  143. van Zweden, J. S. 2010. The evolution of honest queen pheromones in insect societies. Comm. Integ. Biol. 3:50–52.CrossRefGoogle Scholar
  144. Vander Meer, R. K. and Alonso, L. 2002. Queen primer pheromone affects conspecific fire ant (Solenopsis invicta) aggression. Behav. Ecol. Sociobiol. 51:122–130.CrossRefGoogle Scholar
  145. Vander Meer, R. K., Glancey, B. M., Lofgren, C. S., Glover, A., Tumlinson, J. H., and Rocca, J. 1980. The poison sac of red imported fire ant queens: Source of a pheromone attractant. Ann. Entomol. Soc. Am. 73:609.Google Scholar
  146. Vargo, E. and Fletcher, D. 1986a. Evidence of pheromonal queen control over the production of male and female sexuals in the fire ant, solenopsis invicta. J. Comp. Physiol. A. 159:741–749.CrossRefGoogle Scholar
  147. Vargo, E. and Fletcher, D. 1986b. Queen number and the production of sexuals in the fire ant, solenopsis invicta (hymenoptera: Formicidae). Behav. Ecol. Sociobiol. 19:41–47.CrossRefGoogle Scholar
  148. Vargo, E. L. 1998. Primer pheromones in ants. pp. 293–313 in Vander Meer, R., Breed, M., Sespelie, K., and Winston, M. L. (eds). Pheromone Communication in Social Insects: Ants, Wasps, Bees, and Termites. Westview Press, Boulder, CO.Google Scholar
  149. Vargo, E. L. and Fletcher, D. J. C. 1987. Effect of queen number on the production of sexuals in natural populations of the fire ant, Solenopsis invicta. Physiol. Entomol. 12:109–116.CrossRefGoogle Scholar
  150. Vargo, E. L. and Hulsey, C. D. 2000. Multiple glandular origins of queen pheromones in the fire ant Solenopsis invicta. J. Insect. Physiol. 46:1151.PubMedCrossRefGoogle Scholar
  151. Vergoz, V., Schreurs, H., and Mercer, A. R. 2007. Queen pheromone blocks aversive learning in young worker bees. Science 317:384–386.PubMedCrossRefGoogle Scholar
  152. Wang, Z., Gerstein, M., and Snyder, M. 2009. RNA-seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 10:57–63.PubMedCrossRefGoogle Scholar
  153. Wanner, K. W., Nichols, A. S., Walden, K. K., Brockmann, A., Luetje, C. W., and Robertson, H. M. 2007. A honey bee odorant receptor for the queen substance 9-oxo-2-decenoic acid. Proc. Natl. Acad. Sci. USA 104:14383–14388.PubMedCrossRefGoogle Scholar
  154. Weil, T., K. Hoffmann, K., Kroiss, J., Strohm, E., and Korb, J. 2009. Scent of a queen - cuticular hydrocarbons specific for female reproductives in lower termites. Naturwissenschaften 96:315–319.Google Scholar
  155. Werren, J., Richards, S., Desjardins, C., Niehuis, O., Gadau, J., Colbourne, J., Elsik, C., Murphy, T., Worley, K., and Zdobnov, E. 2010. Insights from three genomes of nasonia: Insect natural enemies and emerging genetic model. Science 327:343–348.PubMedCrossRefGoogle Scholar
  156. West-Eberhard, M. 1967. Foundress associations in polistine wasps: Dominance hierarchies and the evolution of social behavior. Science 157:1584–1585.CrossRefGoogle Scholar
  157. Wilson, E. O. 1971. The Insect Societies. Belknap Press of Harvard University Press, Cambridge, Mass.Google Scholar
  158. Winston, M., Slessor, K. N., Willis, L. G., Naumann, K., Higo, H. A., Wyborn, M. H., and Kamiski, L. 1989. The influence of queen mandibular pheromone on worker attraction to swarm clusters and inhibition of queen rearing in the honey bee (Apis melifera l.). Insectes Sociaux 36:15–27.CrossRefGoogle Scholar
  159. Winston, M. L. 1987. The Biology of the Honey Bee. Harvard University Press, Cambridge.Google Scholar
  160. Woodard, S. H., Fischman, B. J., Venkat, A., Hudson, M. E., Varala, K., Cameron, S. A., Clark, A. G., and Robinson, G. E. 2011. Genes involved in convergent evolution of eusociality in bees. Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1103457108.
  161. Wossler, T. and Crewe, R. M. 1999a. The releaser effects of the tergal gland secretion of queen honeybees (Apis mellifera). J. Insect Behav. 12:343–351.CrossRefGoogle Scholar
  162. Wossler, T. C. and Crewe, R. M. 1999b. Honeybee queen tergal gland secretion affects ovarian development in caged workers. Apidologie 30:311–320.CrossRefGoogle Scholar
  163. Wurm, Y., Wang, J., Riba-Grognuz, O., Corona, M., Nygaard, S., Hunt, B. G., Ingram, K. K., Falquet, L., Nipitwattanaphon, M., Gotzek, D., Dijkstra, M. B., Oettler, J., Comtesse, F., Shih, C. J., Wu, W. J., Yang, C. C., Thomas, J., Beaudoing, E., Pradervand, S., Flegel, V., Cook, E. D., Fabbretti, R., Stockinger, H., Long, L., Farmerie, W. G., Oakey, J., Boomsma, J. J., Pamilo, P., Yi, S. V., Heinze, J., Goodisman, M. A., Farinelli, L., Harshman, K., Hulo, N., Cerutti, L., Xenarios, I., Shoemaker, D., and Keller, L. 2011. The genome of the fire ant Solenopsis invicta. Proc. Natl. Acad. Sci. USA 108:5679–5684.PubMedCrossRefGoogle Scholar
  164. Wyatt, T. 2003. Pheromones and Animal Behaviour: Communication by Smell and Taste. Cambridge Univ Pr.Google Scholar
  165. Zahavi, A. 1993. The fallacy of conventional signalling. Philos. Trans. R. Soc. Lond. B. 340:227–230.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Entomology, Center for Pollinator Research, Center for Chemical Ecology, Huck Institutes of the Life SciencesPennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeUSA

Personalised recommendations