Journal of Chemical Ecology

, Volume 37, Issue 11, pp 1231–1241 | Cite as

Species-Specific Chemical Signatures in Scale Insect Honeydew

  • Manpreet K. Dhami
  • Robin Gardner-Gee
  • Jeremy Van Houtte
  • Silas G. Villas-Bôas
  • Jacqueline R. Beggs


The quantity and chemical composition of honeydew produced by scale insects may influence wider community structure, but little is known about the detailed chemical composition of the honeydew found in forest ecosystems. We used gas chromatography–mass spectrometry to examine the amino acid and carbohydrate composition of honeydew from three New Zealand communities. Low molecular weight carbohydrates (mono-, di-, and tri-saccharides) were derivatized using a modified trimethylsilyl (TMS) method, and amino and non-amino organic acids were derivatized using methylchloroformate (MCF). These recently developed derivatization methods allowed us to detect atypical compounds such as sugar alcohols, fatty acids, and non-amino organic acids, in addition to the more routinely studied compounds such as sugars and amino acids. Some compounds could not be identified and may be novel. Multivariate analysis showed that honeydew from each scale insect species had a distinctive amino acid and carbohydrate signature. We suggest these chemical signatures may influence the types of consumers that are attracted to different honeydews and may explain the characteristic communities associated with these honeydews.

Key Words

Honeydew composition GC-MS Consumer community Metabolite profiling TMS-derivatization MCF-derivatization 


  1. Auclair, J. 1963. Aphid feeding and nutrition. Annu. Rev. Entomol. 8: 439–490.CrossRefGoogle Scholar
  2. Ball, S. L., and Armstrong, K. F. 2007. Using DNA barcodes to investigate the taxonomy of the New Zealand sooty beech scale insect. DOC research & development series 287. Science and Technical Publishing, Department of Conservation, Wellington: New Zealand 14 pp.Google Scholar
  3. Beggs, J. R., and Wardle, D. A. 2006. Keystone species: Competition for honeydew among exotic and indigenous species, pp. 281–294, in R. Allen and W. Lee (eds.), Biological invasions in New Zealand. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  4. Beggs, J. R., Karl, B. J., Wardle, D. A., and BONNER, K. 2005. Soluble carbon production by honeydew scale insects in a New Zealand beech forest. N. Z. J. Ecol. 29:105–115.Google Scholar
  5. Blüthgen, N., and Fiedler, K. 2004. Competition for composition: Lessons from nectar-feeding ant communities. Ecology 85:1479–1485.CrossRefGoogle Scholar
  6. Blüthgen, N., Gottsberger, G., and FIEDLER, K. 2004. Sugar and amino acid composition of ant-attended nectar and honeydew sources from an Australian rainforest. Austral. Ecol. 29:418–429.CrossRefGoogle Scholar
  7. Byrne, D. N., Hendrix, D. L., and Williams III, L. H. 2003. Presence of trehalulose and other oligosaccharides in hemipteran honeydew, particularly Aleyrodidae. Physiol. Entomol. 28:144–149.CrossRefGoogle Scholar
  8. Chapman, R. F. 1998. The insects: Structure and function. Cambridge University Press, Cambridge.Google Scholar
  9. Douglas, A. E. 1998. Nutritional interactions in insect-microbial symbioses: Aphids and their symbiotic bacteria Buchnera. Annu. Rev. Entomol. 43:17–37.PubMedCrossRefGoogle Scholar
  10. Douglas, A. E. 2006. Phloem-sap feeding by animals: Problems and solutions. J. Exp. Bot. 57:747.PubMedCrossRefGoogle Scholar
  11. Fischer, M. K., and Shingleton, A. W. 2001. Host plant and ants influence the honeydew sugar composition of aphids. Funct. Ecol. 15:544–550.CrossRefGoogle Scholar
  12. Foldi, I. 1990. Internal anatomy, pp 73–90 in: D. Rosen, (ed.), Armored scale insects: Their biology, natural enemies and control. Elsevier, New York.Google Scholar
  13. Gardner-Gee, R., and Beggs, J. R. 2009. Distribution and abundance of endemic coelostomidiid scale insects (Hemiptera: Coelostomidiidae) in Auckland forests, New Zealand. N. Z. J. Ecol. 33:138–146.Google Scholar
  14. Gardner-Gee, R., and Beggs, J. R. 2010. Challenges in food-web restoration: An assessment of the restoration requirements of a honeydew-gecko trophic interaction in the Auckland region, New Zealand. Restor. Ecol. 18.Google Scholar
  15. Gaze, P. D., and Clout, M. N. 1983. Honeydew and its importance to birds in beech forests of South Island, New Zealand. N. Z. J. Ecol. 6:33–37.Google Scholar
  16. Glassop, D., Roessner, U., Bacic, A., and Bonnett, G. D. 2007. Changes in the sugarcane metabolome with stem development. Are they related to sucrose accumulation? Plant Cell Physiol. 48:573–584.PubMedCrossRefGoogle Scholar
  17. González-Teuber, M., and Heil, M. 2009a. Nectar chemistry is tailored for both attraction of mutualists and protection from exploiters. Plant Signal. Behav. 4:809–813.PubMedCrossRefGoogle Scholar
  18. González-Teuber, M., and Heil, M. 2009b. The role of extrafloral nectar amino acids for the preferences of facultative and obligate ant mutualists. J. Chem. Ecol. 35:459–468.PubMedCrossRefGoogle Scholar
  19. Grant, D. W., and Beggs, J. R. 1989. Carbohydrate analysis of beech honeydew. N. Z. J. Zool. 16:283–288.Google Scholar
  20. Gray, R. 1952. Composition of honeydew excreted by pineapple mealybugs. Science 115:129–133.PubMedCrossRefGoogle Scholar
  21. Harris, R. J., Thomas, C. D., and Moller, H. 1991. The influence of habitat use and foraging on the replacement of one introduced wasp species by another in New Zealand. Ecol. Entomol. 16:441–448.CrossRefGoogle Scholar
  22. Hendrix, D. L., and Salvucci, M. E. 1998. Polyol metabolism in homopterans at high temperatures: Accumulation of mannitol in aphids (Aphididae: Homoptera) and sorbitol in whiteflies (Aleyrodidae: Homoptera). Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 120:487–494.CrossRefGoogle Scholar
  23. Hendrix, D. L., Wei, Y. A., and Leggett, J. E. 1992. Homopteran honeydew sugar composition is determined by both the insect and plant species. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 101:23–27.CrossRefGoogle Scholar
  24. Hussain, A., Forrest, J. M. S., and Dixon, A. F. G. 1974. Sugar, organic acid, phenolic acid and plant growth regulator content of extracts of honeydew of the aphid Myzus persicae and of its host plant, Raphanus sativus. Ann. Appl. Biol. 78:65–73.PubMedCrossRefGoogle Scholar
  25. Karley, A. J., Ashford, D. A., Minto, L. M., Pritchard, J., and Douglas, A. E. 2005. The significance of gut sucrase activity for osmoregulation in the pea aphid, Acyrthosiphon pisum. J. Insect Physiol. 51:1313–1319.PubMedCrossRefGoogle Scholar
  26. Lamb, K. P. 1959. Composition of the honeydew of the aphid Brevicoryne brassicae (L.) feeding on swedes (Brassica napobrassica DC.). J. Insect Physiol. 3:1–13.CrossRefGoogle Scholar
  27. Mccutcheon, J. P., and Moran, N. A. 2007. Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. Proc. Natl. Acad. Sci. USA 104:19392–19397.PubMedCrossRefGoogle Scholar
  28. Morales, C. F. 1991. Fauna of New Zealand, 21: Margarodidae (Insecta: Hemiptera). Auckland: DSIR Plant Protection.Google Scholar
  29. O’dowd, D. J., Green, P. T., and Lake, P. S. 2003. Invasional ‘meltdown’ on an oceanic island. Ecol. Lett. 6:812–817.CrossRefGoogle Scholar
  30. Romeis, J., and Wäckers, F. L. 2000. Feeding responses by female Pieris brassicae butterflies to carbohydrates and amino acids. Physiol. Entomol. 25:247–253.CrossRefGoogle Scholar
  31. Smart, K. F., Aggio, R. B. M., Van Houtte, J. R., and Villas-Boas, S. G. 2010. Analytical platform for metabolome analysis of microbial cells using methyl chloroformate derivatization followed by gas chromatography-mass spectrometry. Nat. Protocols 5:1709–1729.CrossRefGoogle Scholar
  32. Towns, D. R. 2002. Interactions between geckos, honeydew scale insects and host plants revealed on islands in northern New Zealand, following eradication of introduced rats and rabbits, pp 329–335 in C. Vietch, Clout M. (eds.). Turning the tide: The eradication of invasive species: proceedings of the international conference on eradication of island invasives. Gland, Switzerland and Cambridge, UK: IUCN SSC Invasive Species Specialist Group.Google Scholar
  33. Villas-Bôas, S. G., Delicado, D., Akesson, M., and Nielsen, J. 2003. Simultaneous analysis of amino and non-amino organic acids as methyl chloroformate derivatives using gas chromatography-mass spectrometry. Anal. Biochem. 322:134–138.PubMedCrossRefGoogle Scholar
  34. Villas-Bôas, S. G., Noel, S., Lane, G. A., Attwood, G., and Cookson, A. 2006. Extracellular metabolomics: A metabolic footprinting approach to assess fiber degradation in complex media. Anal. Biochem. 349:297–305.PubMedCrossRefGoogle Scholar
  35. Villas-Bôas, S. G., Smart, K. F., Sivakumaran, S., and Lane, G. A. 2011. Alkylation or silylation for analysis of amino and non-amino organic acids by GC-MS? Metabolites 1: 3–20.CrossRefGoogle Scholar
  36. Völkl, W., Woodring, J., Fischer, M., Lorenz, M. W., and Hoffmann, K. H. 1999. Ant-aphid mutualisms: The impact of honeydew production and honeydew sugar composition on ant preferences. Oecologia 118:483–491.CrossRefGoogle Scholar
  37. Wäckers, F. L. 2001. A comparison of nectar- and honeydew sugars with respect to their utilization by the hymenopteran parasitoid Cotesia glomerata. J. Insect Physiol. 47:1077–1084.PubMedCrossRefGoogle Scholar
  38. Ward, D. F. 2009. The diversity, community composition and seasonality of native ants in northern New Zealand. Myrmecological News 12:195–200.Google Scholar
  39. Wool, D., Hendrix, D., and Shukry, O. 2006. Seasonal variation in honeydew sugar content of galling aphids (Aphidoidea: Pemphigidae: Fordinae) feeding on Pistacia: Host ecology and aphid physiology. Basic Appl. Ecol. 7:141–151.CrossRefGoogle Scholar
  40. Yao, I., and Akimoto, S. 2001. Ant attendance changes the sugar composition of the honeydew of the drepanosiphid aphid Tuberculatus quercicola. Oecologia 128:36–43.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Manpreet K. Dhami
    • 1
  • Robin Gardner-Gee
    • 2
  • Jeremy Van Houtte
    • 1
  • Silas G. Villas-Bôas
    • 1
  • Jacqueline R. Beggs
    • 2
  1. 1.Centre for Microbial Innovation, University of AucklandAucklandNew Zealand
  2. 2.Biodiversity, Biosecurity and Conservation, School of Biological SciencesUniversity of AucklandAucklandNew Zealand

Personalised recommendations