Journal of Chemical Ecology

, Volume 36, Issue 11, pp 1226–1233 | Cite as

Age and Mating Status Do Not Affect Transcript Levels of Odorant Receptor Genes in Male Antennae of Heliothis virescens and Heliothis subflexa

  • Stephanie Soques
  • Gissella M. Vásquez
  • Christina M. Grozinger
  • Fred GouldEmail author


In biological systems, it is expected that gene expression levels generally will correlate with temporally varying physiological and biological needs, and that gene expression levels could regulate biological capabilities. In moth species, male response to female sex pheromones often is affected by moth age and mating status. Odorant receptors (ORs) expressed in neurons within male antennae are critical for detecting the female pheromones. Therefore, we hypothesized that the expression level of these receptor proteins would be affected by age and mating status of male moths. We examined expression levels of two OR genes that are preferentially expressed in the male antennae of Heliothis virescens (HvOR13 and HvOR15) and Heliothis subflexa (HsOR13 and HsOR15). Antennae were dissected from virgin males at 2 h, 1 d, 2 d, 4 d, and 8 d. We also dissected antennae from 4-d-old mated males. We found that age had no effect on expression levels of either OR in either species, except for a small difference in HsOR15 expression between 2 h and 8-d-old virgin males. Furthermore, we found no effect of mating status on expression level of these ORs in either species. We discuss these findings in relationship to studies of age and mating status effects on male electrophysiological and behavioral response to female pheromones, and contrast our results to studies on the effects of age and mating status on gene expression of pheromone receptor proteins and pheromone binding proteins in other moths.

Key Words

Odorant receptors Pheromones Gene expression Quantitative real-time PCR Heliothis virescens Heliothis subflexa Lepidoptera Noctuidae 



We thank Consuelo Arellano for statistical advice, and Rebekah Powell and Ollie Inglis for technical assistance. This work was funded by the USDA grant 2007-35607-17824 to F.G. and a W.M. Keck Post-doctoral Fellowship to G.M.V.

Supplementary material

10886_2010_9863_MOESM1_ESM.xlsx (28 kb)
ESM 1 (XLSX 27 kb)
10886_2010_9863_MOESM2_ESM.xlsx (10 kb)
Table S1 OR13, OR15, RL31 and RPS3 CT values (mean ± SE) obtained in qRT-PCR analyses performed on H. virescens and H. subflexa male antennae (XLSX 9 kb)


  1. Abrantes, P., Dimopoulos, G., Grosso, A. R., Do Rosário, V. E., and Silveira, H. 2008. Chloroquine mediated modulation of Anopheles gambiae gene expression. PLoS ONE 3:e2587.CrossRefPubMedGoogle Scholar
  2. Abreu, R. D. S., Penalva, L. O., Marcotte, E .M., and Vogel, C. 2009. Global signatures of protein and mRNA expression levels. Mol. BioSyst. 5:1512–1526.Google Scholar
  3. Anton, S., and Gadenne, C. 1999. Effect of juvenile hormone on the central nervous processing of sex pheromone in an insect. Proc. Natl. Acad. Sci. USA 96:5764–5767.CrossRefPubMedGoogle Scholar
  4. Bahrndorff, S., Marien, J., Loeschcke, V., and Ellers, J. 2009. Dynamics of heat-induced thermal stress resistance and Hsp70 expression in the springtail, Orchesella cincta. Funct. Ecol. 23:233–239.CrossRefGoogle Scholar
  5. Baker, T. C. 2009. Nearest neural neighbors: Moth sex pheromone receptors HR11 and HR13. Chem. Senses 34:465–468.CrossRefPubMedGoogle Scholar
  6. Baker, T. C., and Carde, R. T. 1979. Endogenous and exogenous factors affecting periodicities of female calling and male sex pheromone response in Grapholitha milesta (Busck). J. Insect Physiol. 25:943–950.CrossRefGoogle Scholar
  7. Burton, R. L. 1970. A low-cost artificial diet for corn earworm. J. Econ. Entomol. 63:1969–1970.Google Scholar
  8. Chapin, J. B., Ganaway, D. R., Leonard, B. R., Micinski, S., Burris, E., and Graves, J. B. 1997. Species composition of heliothinae captured in cone traps baited with synthetic bollworm or tobacco budworm pheromones. Southwest. Entomol. 22:223–231.Google Scholar
  9. Da Silva, E. F., De Carvalho, C. M., Do Nascimento, R. R., Mendonça, A. L., Da Silva, C. E., Gonçalves, G. B., Do Rosário, M., De Freitas, T., and Sant’ana, A. E. G. 2006. Reproductive behaviour of the Annona Fruit Borer, Cerconota anonella. Ethology 112:971–976.CrossRefGoogle Scholar
  10. Delisle, J. 1995. Effect of male and female age on the mating success of the obliquebanded leafroller Choristoneura rosaceana (Lepidoptera: Tortricidae) under different ecological conditions. J. Insect Behav. 8:781–799.CrossRefGoogle Scholar
  11. Delorme, J. D., and Payne, T. L. 1984. Effects of sensory adaptation, stimulus concentration and age on antennal olfactory response to sex-pheromone by male Heliothis zea. J. GA. Entomol. Soc. 19:371–377.Google Scholar
  12. Dierick, H. A., and Greenspan, R. J. 2006. Molecular analysis of flies selected for aggressive behavior. Nat. Genet. 38:1023–1031.CrossRefPubMedGoogle Scholar
  13. Domingue, M. J., Roelofs, W. L., Linn, C. E., and Baker, T. C. 2006. Effects of egg-to-adult development time and adult age on olfactory neuron response to semiochemicals in European corn borers. J. Insect Physiol. 52:975–983.CrossRefPubMedGoogle Scholar
  14. Evenden, M. L., and Gries, R. 2008. Plasticity of male response to sex pheromone depends on physiological state in a long-lived moth. Anim. Behav. 75:663–672.CrossRefGoogle Scholar
  15. Fox, A. N., Pitts, R. J., Robertson, H. M., Carlson, J. R., and Zwiebel, L. J. 2001. Candidate odorant receptors from the malaria vector mosquito Anopheles gambiae and evidence of down-regulation in response to blood feeding. Proc. Natl. Acad. Sci. USA 98:14693–14697.CrossRefPubMedGoogle Scholar
  16. Gadenne, C., and Anton, S. 2000. Central processing of sex pheromone stimuli is differentially regulated by juvenile hormone in a male moth. J. Insect Physiol. 46:1195–1206.CrossRefPubMedGoogle Scholar
  17. Gadenne, C., Renou, M., and Sreng, L. 1993. Hormonal control of pheromone responsiveness in the male black cutworm Agrotis ipsilon. Experientia 49:721–724.CrossRefGoogle Scholar
  18. Gemeno, C., and Haynes, K. F. 2000. Periodical and age-related variation in chemical communication system of black cutworm moth Agrotis ipsilon. J. Chem. Ecol. 26:329–342.CrossRefGoogle Scholar
  19. Gohl, T., and Krieger, J. 2006. Immunolocalization of a candidate pheromone receptor in the antennae of the male moth, Heliothis virescens. Invert. Neurosci. 6:13–21.CrossRefPubMedGoogle Scholar
  20. Gould, F., Anderson, A., Reynolds, A., Bumgarner, L., and, Moar, W. 1995. Selection and genetic analysis of a Heliothis virescens (Lepidoptera, Noctuidae) strain with high levels of resistance to Bacillus thuringiensis toxins. J. Econ. Entomol. 88:1545–1559.Google Scholar
  21. Gould, F., Estock, M., Hillier, N. K., Powell, R., Groot, A. T., Ward, C. M., Emerson, J., Schal, C., and Vickers, N. J. 2010. Sexual isolation of male moths explained by a single QTL containing four receptor genes. Proc. Nat. Acad. Sci. USA. 107:8660–8665.CrossRefPubMedGoogle Scholar
  22. Groot, A. T., Bennett, J., Hamilton, J., Santangelo, R. G., Schal, C., and Gould, F. 2006. Experimental evidence for interspecific directional selection on moth pheromone communication. Proc. Nat. Acad. Sci. USA. 103:5858–5863.CrossRefPubMedGoogle Scholar
  23. Groot, A. T., Estock, M. L., Horovitz, J. L., Hamilton, J., Santangelo, R. G., Schal, C., and Gould, F. 2009. QTL analysis of sex pheromone blend differences between two closely related moths: insights into divergence in biosynthetic pathways. Insect Biochem. Mol. Biol. 39:568–577.CrossRefPubMedGoogle Scholar
  24. Grosse-wilde, E., Gohl, T., Bouche, E., Breer, H., and Krieger, J. 2007. Candidate pheromone receptors provide the basis for the response of distinct antennal neurons to pheromonal compounds. Eur. J. Neurosci. 25:2364–2373.CrossRefPubMedGoogle Scholar
  25. Hansson, B. S. 1995. Olfaction in Lepidoptera. Experientia 51:1003–10027CrossRefGoogle Scholar
  26. Heath, R. R., Mclaughlin, J. R., Proshold, F., and Teal, P. E. A. 1991. Periodicity of female sex pheromone titer and release in Heliothis subflexa and Heliothis virescens (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 84:182–189.Google Scholar
  27. Kanno, H., and Sato, A. 1978. Mating behavior of the rice stem borer moth, Chilo suppressalis Walker (Lepidoptera: Pyralidae) I. Effects of moth age on mating activity. Appl. Ent. Zool. 13:215–221.Google Scholar
  28. Klepetka, B., and Gould, F. 1996. Effects of age and size on mating in Heliothis virescens (Lepidoptera: Noctuidae): implications for resistance management. Environ. Entomol. 25:993–1001.Google Scholar
  29. Klun, J. A., Leonhardt, B. A., Lopez, J. D., and Lachance, L. E. 1982. Female Heliothis subflexa (Lepidoptera: Noctuidae) sex pheromone: chemistry and congeneric comparisons. Environ. Entomol. 11:1084–1090.Google Scholar
  30. Krieger, J., Grosse-wilde, E., Gohl, T., Dewer, Y. M., Raming, K., and Breer, H. 2004. Genes encoding candidate pheromone receptors in a moth (Heliothis virescens). Proc. Natl. Acad. Sci. USA 101:11845–11850.CrossRefPubMedGoogle Scholar
  31. Krieger, J., Gondesen, I., Forstner, M., Gohl, T., Dewer, Y., and Breer, H. 2009. HR11 and HR13 receptor-expressing neurons are housed together in pheromone-responsive sensilla trichodea of male Heliothis virescens. Chem. Senses. 34:469–477.CrossRefPubMedGoogle Scholar
  32. Kurtovic, A., Widmer, A., and Dickson, B. J. 2007. A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone. Nature 446:542–546.CrossRefPubMedGoogle Scholar
  33. Merlin, C., Lucas, P., Rochat, D., François, M.-C., Maïbèche-coisne, M., and Jacquin-joly, E. 2007. An antennal circadian clock and circadiam rhythms in peripheral pheromone reception in the moth Spodoptera littoralis. J. Biol. Rhythms 22:502–514.CrossRefPubMedGoogle Scholar
  34. Michalak, P., Malone, J. H., Lee, I. T., Hoshino, D., and, Ma, D. 2007. Gene expression polymorphism in Drosophila populations. Molec. Ecol. 16:1179–1189.CrossRefGoogle Scholar
  35. Parajulee, M. N., Rummel, D. R., Arnold, M. D., and Carroll, S. C. 2004. Long-term seasonal abundance patterns of Helicoverpa zea and Heliothis virescens (Lepidoptera: Noctuidae) in the Texas high plains. J. Econ. Entomol. 97:668–677.CrossRefPubMedGoogle Scholar
  36. Patch, H. M., Velarde, R. A., Walden, K. K. O., and Robertson, H. M. 2009. A candidate pheromone and two odorant receptors of the Hawkmoth Manduca sexta. Chem. Senses 34:305–316.CrossRefPubMedGoogle Scholar
  37. Pearson, G. A., and Schal, C. 1999. Electroantennogram responses of both sexes of grape root borer (Lepidoptera: Sesiidae) to synthetic female sex pheromone. Environ. Entomol. 28: 943–946.Google Scholar
  38. Peckol, E. L., Troemel, E. R., and Bargmann, C. I. 2001. Sensory experience and sensory activity regulate chemosensory receptor gene expression in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 98:11032–11038.CrossRefPubMedGoogle Scholar
  39. Ramaswamy, S. B., Randle, S. A., and Ma, W. K. 1985. Field evaluation of the sex pheromone components of Heliothis virescens (Lepidoptera: Noctuidae) in cone traps. Environ. Entomol. 14:293–296.Google Scholar
  40. Roelofs, W. L., Hill, A. S., Carde, R. T., and Baker, T. C. 1974. Two sex pheromone components of the tobacco budworm moth Heliothis virescens. Life Sci. 14:1555–1562.CrossRefPubMedGoogle Scholar
  41. Sas Institute Inc. (2004) SAS OnlineDoc® 9.1.3. Cary, NC: SAS Institute Inc.Google Scholar
  42. Sheck, A. L., Groot, A. T., Ward, C. M., Gemeno, C., Wang, J., Brownie, C., Schal, C., and Gould, F. 2006. Genetics of sex pheromone blend differences between Heliothis virescens and Heliothis subflexa: a chromosome mapping approach. J. Evol. Biol. 19:600–617.CrossRefPubMedGoogle Scholar
  43. Shorey, H. H., Morin, K. L., and Gaston, L. K. 1968. Sex pheromones of Noctuid moths. XV. Timing of development of pheromone-responsiveness and other indicators of reproductive age in males of eight species. Ann. Entomol. Soc. Amer. 61:857–861.PubMedGoogle Scholar
  44. Traynier, R. M. M. 1970. Sexual behaviour of the Mediterranean flour moth, Anagasta kühniella: Some influences of age, photoperiod, and light intensity. Can. Ent. 102:534–540.CrossRefGoogle Scholar
  45. Tumlinson, J. H., Hendricks, P. E., Mitchell, E. R., Doolittle, R. E., and Brennan, M. M. 1975. Isolation, identification, and synthesis of the sex pheromone of the tobacco budworm moth. J. Chem. Ecol. 1:203–214.CrossRefGoogle Scholar
  46. Vásquez, G. M., Fischer, P., Grozinger, C. M., and Gould F. in press. Differential expression of odorant receptor genes that are involved in sexual isolation of two Heliothis moths. Insect Mol. Biol. Google Scholar
  47. Vetter, R. S., and Baker, T. C. 1983. Behavioral responses of male Heliothis virescens in a sustained flight tunnel to combinations of seven compounds identified from female sex pheromone glands. J. Chem. Ecol. 9:747–759.CrossRefGoogle Scholar
  48. Wang, G., Vásquez, G. M., Schal, C., Zwiebel, L. J., and Gould, F. in press. Functional characterization of pheromone receptors in the tobacco budworm Heliothis virescens. Insect Mol. Biol. Google Scholar
  49. Xiu, W. M., and Dong, S. L. 2007. Molecular characterization of two pheromone binding proteins and quatitative analysis of their expression in the beet armyworm Spodoptera exigua Hübner. J Chem. Ecol. 33:947–961.CrossRefPubMedGoogle Scholar
  50. Zhang, Z.-C., Wang, M.-Q., and Zhang, G. 2009. Molecular cloning and expression of pheromone-binding protein1 from the diamondback moth, Plutella xylostella. Entomol. Exp. Appl. 133:136–145.CrossRefGoogle Scholar
  51. Zhou, S., Stone, E. A., Mackay, T. F., and Anholt, R. R. 2009. Plasticity of the chemoreceptor repertoire in Drosophila melanogaster. PLoS Genet 5:e1000681.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Stephanie Soques
    • 1
  • Gissella M. Vásquez
    • 1
  • Christina M. Grozinger
    • 2
  • Fred Gould
    • 1
    Email author
  1. 1.Department of Entomology and W.M. Keck Center for Behavioral BiologyNorth Carolina State UniversityRaleighUSA
  2. 2.Department of Entomology, Center for Pollinator Research, Center for Chemical Ecology and Huck Institutes of the Life SciencesPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations