Journal of Chemical Ecology

, Volume 36, Issue 10, pp 1068–1075 | Cite as

Leaf Volatile Emissions of Betula pendula during Autumn Coloration and Leaf Fall

  • Jarmo K. HolopainenEmail author
  • Juha Heijari
  • Elina Oksanen
  • Giorgio A. Alessio


Deciduous trees remobilize the nitrogen in leaves during the process of autumn coloration, thus providing a high quality food source for aphids preparing to lay over-wintering eggs. It has been suggested that aphids may use volatile organic compounds (VOCs) to: (a) select leaves where nutrient remobilization has started and induced defenses are reduced; and (b) detect the time of leaf abscission. We analyzed VOCs emitted by the foliage of Betula pendula Roth. during autumn coloration and from leaf litter just after leaf fall. We tested the hypothesis that costly, photosynthesis-related terpenes and other herbivore-induced VOCs related to attraction of aphid parasitoids and predators are reduced during the coloration process. We also investigated if the VOC emission profile of abscising leaves is different from that of early stage yellowing leaves. Enemy-luring compounds (E)-β-ocimene, linalool, and (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) were emitted only from the green foliage. Methyl salicylate (MeSa), known to recruit predatory bugs and attract migrant aphids, was emitted until the first stage of color change. Cis-3-hexenol, an indicator of cellular disintegration, became dominant in the emissions from abscising leaves and from fresh leaf litter. We discuss the ecological significance of the observed changes in birch leaf VOC profiles during the process of autumn senescence.

Key Words

Birch Senescence Litter Monoterpenes Green leaf volatiles VOCs Induced volatiles Aphids 



We thank James Blande and Robert Glinwood for comments on an earlier draft of the manuscript. This study was financially supported by the Academy of Finland (project no. 111543, J.K.H, and J.H., project no. 109933, E.O.), European Commission (ISONET, MRTN-CT-2003-504720, J.K.H) and the European Science Foundation, (VOCBAS programme, G.A.A.).


  1. Archetti, M. 2000. The origin of autumn colours by coevolution. J. Theor. Biol. 205:625–630.CrossRefPubMedGoogle Scholar
  2. Archetti, M. 2009. Evidence from the domestication of apple for the maintenance of autumn colours by coevolution. Proc. Royal Soc. London. Series B, Biol. Sci. 276:2575–2580.CrossRefGoogle Scholar
  3. Archetti, M. and Brown, S.P. 2006. Putting ‘red alerts’ in an ecological and evolutionary context. BioEssays 28:959–959.CrossRefPubMedGoogle Scholar
  4. Archetti, M., Döring, T.F., Hagen, S.B., Hughes, N.M., Leather, S.R., Lee, D.W., Lev-Yadun, S., Manetas, Y., Ougham, H.J., Schaberg, P.G. et al. 2009. Unravelling the evolution of autumn colours: an interdisciplinary approach. Trends Ecol. Evol. 24:166–173.CrossRefPubMedGoogle Scholar
  5. Arimura, G.I., Kopke, S., Kunert, M., Volpe, V., David, A., Brand, P., Dabrowska, P., Maffei, M.E., and Boland, W. 2008. Effects of feeding Spodoptera littoralis on lima bean leaves: IV. Diurnal and nocturnal damage differentially initiate plant volatile emission. Plant Physiol. 146:965–973.CrossRefPubMedGoogle Scholar
  6. Beale, M.H., Birkett, M.A., Bruce, T.J.A., Chamberlain, K., Field, L.M., Huttly. A.K., Martin, J.L., Parker, R., Phillips, A.L., Pickett, J.A., Prosser, I.M., Shewry, P.R., Smart, L.E., Wadhams, L.J., Woodcock, C.M., and Zhang, Y.H. 2006. Aphid alarm pheromone produced by transgenic plants affects aphid and parasitoid behavior. Proc. Nat. Acad. Sci. U. S. A. 103:10509–10513.CrossRefGoogle Scholar
  7. Blande, J.D., Korjus, M., and Holopainen, J.K. 2010. Foliar methyl salicylate emissions indicate prolonged aphid infestation on silver birch and black alder. Tree Physiol. 30:404–416.CrossRefPubMedGoogle Scholar
  8. Blande, J.D., Tiiva, P., Oksanen, E., and Holopainen, J.K. 2007. The emission of herbivore induced volatile terpenoids from two hybrid aspen (Populus tremula x tremuloides) clones under ambient and elevated ozone concentrations in the field. Global Change Biol. 13: 2538–2550.CrossRefGoogle Scholar
  9. Bruggemann, N. and Schnitzler, J.P. 2001. Influence of powdery mildew (Microsphaera alphitoides) on isoprene biosynthesis and emission of pedunculate oak (Quercus robur L.) leaves. J. Appl. Bot. 75:91–96.Google Scholar
  10. Cottrell, T.E., Wood, B.W., and Ni, X. 2009. Chlorotic feeding injury by the black pecan aphid (Hemiptera: Aphididae) to pecan foliage promotes aphid settling and nymphal development. Environ. Entomol. 38:411–416.CrossRefPubMedGoogle Scholar
  11. D’auria, J.C., Pichersky, E., Schaub, A., Hansel, A., and Gershenzon J. 2007. Characterization of a BAHD acyltransferase responsible for producing the green leaf volatile (Z)-3-hexen-1-yl acetate in Arabidopsis thaliana. Plant J. 49:194–207.CrossRefPubMedGoogle Scholar
  12. Dicke M. and Baldwin I.T. 2010. The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci. 15:167–175.CrossRefPubMedGoogle Scholar
  13. Evain, S., Flexas, J., and Moya, I. 2004. A new instrument for passive remote sensing: 2. Measurement of leaf and canopy reflectance changes at 531 nm and their relationship with photosynthesis and chlorophyll fluorescence. Rem. Sens. Environ. 91:175–185.CrossRefGoogle Scholar
  14. Fall, R., Karl, T., Hansel, A., Jordan, A., and Lindinger W. 1999. Volatile organic compounds emitted after leaf wounding: On-line analysis by proton-transfer-reaction mass spectrometry. J. Geophys. Res. Atmos. 104(D13):15963–15974.CrossRefGoogle Scholar
  15. Fares, S., Oksanen, E., Lännenpää, M., Julkunen-Tiitto, R., and Loreto, F. 2010. Volatile emissions and phenolic compound concentrations along a vertical profile of Populus nigra leaves exposed to realistic ozone concentrations. Photosynth. Res. 104:61–74.CrossRefPubMedGoogle Scholar
  16. Gershenzon, J. 1994. Metabolic costs of terpenoid accumulation in higher-plants. J. Chem. Ecol. 20:1281–1328.CrossRefGoogle Scholar
  17. Ghirardo, A., Koch, K., Taipale, R., Zimmer, I., Schnitzler J.P., and Rinne J. 2010. Determination of de novo and pool emissions of terpenes from four common boreal/alpine trees by 13CO(2) labelling and PTR-MS analysis. Plant Cell Environ. 33:781–792.PubMedGoogle Scholar
  18. Glinwood, R.T. and Pettersson. J. 2000a. Change in response of Rhopalosiphum padi spring migrants to the repellent winter host component methyl salicylate. Entomol. Exp. Appl. 94:325–330.CrossRefGoogle Scholar
  19. Glinwood R and Pettersson J. 2000b. Movement by mating females of a host alternating aphid: a response to leaf fall. Oikos 90:43–49.CrossRefGoogle Scholar
  20. Hakola, H., Laurila. T., Lindfors. V., Hellen, H., Gaman, A., and Rinne, J. 2001. Variation of the VOC emission rates of birch species during the growing season. Boreal Environ. Res. 6:237–249.Google Scholar
  21. Hamilton, J.F., Lewis, A.C., Carey, T.J., Wenger, J.C., Garcia, E.B.I., and Munoz, A. 2009. Reactive oxidation products promote secondary organic aerosol formation from green leaf volatiles. Atmos. Chem. Phys. 9:3815–3823.CrossRefGoogle Scholar
  22. Hamilton, W.D. and Brown, S.P. 2001. Autumn tree colours as a handicap signal. Proc. Royal Soc. London. Series B, Biol. Sci. 268:1489–1493.CrossRefGoogle Scholar
  23. Holopainen, J.K. 2008. Importance of olfactory and visual signals of autumn leaves in the coevolution of aphids and trees. BioEssays 30:889–896.CrossRefPubMedGoogle Scholar
  24. Holopainen, J.K. and Gershenzon, J. 2010. Multiple stress factors and the emission of plant VOCs. Trends Plant Sci.15:176–184.CrossRefPubMedGoogle Scholar
  25. Holopainen, J.K., Kainulainen, E., Oksanen, J., Wulff, A., and Kärenlampi, L. 1991. Effect of exposure to fluoride, nitrogen compounds and SO2 on the numbers of Spruce shoot aphids on Norway spruce seedlings. Oecologia 86:51–56.CrossRefGoogle Scholar
  26. Holopainen, J.K. and Peltonen, P. 2002. Bright autumn colours of deciduous trees attract aphids: nutrient retranslocation hypothesis. Oikos 99:184–188.CrossRefGoogle Scholar
  27. Holopainen, J.K., Semiz, G., and Blande, J.D. 2009. Life-history strategies affect aphid preference for yellowing leaves. Biol. Lett. 5:603–605.CrossRefPubMedGoogle Scholar
  28. Ibrahim, M.A., Mäenpää, M., Hassinen, V., Kontunen-Soppela, S., Malec, L., Rousi, M., Pietikäinen, L., Tervahauta, A., Kärenlampi, S., Holopainen, J.K. et al. 2010. Elevation of night-time temperature increases terpenoid emissions from Betula pendula and Populus tremula. J. Exp. Bot. 61:1583–1595.CrossRefPubMedGoogle Scholar
  29. Ibrahim, M.A., Stewart-Jones, A., Pulkkinen, J., Poppy, G.M., and Holopainen, J.K. 2008. The influence of different nutrient levels on insect-induced plant volatiles in Bt and non-Bt oilseed rape plants. Plant Biol. 10: 97–107.CrossRefPubMedGoogle Scholar
  30. Isidorov, V.A., Smolewska, M. Purzynska-Pugacewicz, A., and Tyszkiewicz, Z. 2010. Chemical composition of volatile and extractive compounds of pine and spruce leaf litter in the initial stages of decomposition. Biogeosciences Discuss. 7:1727–1750.CrossRefGoogle Scholar
  31. Kainulainen, P. and Holopainen, J.K. 2002. Concentrations of secondary compounds in Scots pine needles at different stages of decomposition. Soil Biol. Biochem. 34:37–42.CrossRefGoogle Scholar
  32. Karl, T., Fall, R., Crutzen, P. J., Jordan, A., and Lindinger,W. 2001. High concentrations of reactive biogenic VOCs at a high altitude site in late autumn, Geophys. Res. Lett. 28:507–510.CrossRefGoogle Scholar
  33. Karl, T., Harren, F., Warneke, C., De Gouw, J., Grayless, C., and Fall, R. 2005. Senescing grass crops as regional sources of reactive volatile organic compounds. J. Geophys. Res. Atmos. 110 (D15), Art. No. D15302Google Scholar
  34. Karnosky, D.F., Werner, H., Holopainen, T., Percy, K., Oksanen, T., Oksanen, E., Heerdt, C., Fabian, P., Nagy, J., Heilman, W., Cox, R., Nelson, N., and Matyssek, R. 2007. Free-air exposure systems to scale up ozone research to mature trees. Plant Biol. 9:181–190.CrossRefPubMedGoogle Scholar
  35. Kappers, I.F., Aharoni, A., Van Herpen, T.W.J.M., Luckerhof,F L.L.P., Dicke, M., and Bouwmeester, H.J. 2005. Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. Science 309:2070–2072.CrossRefPubMedGoogle Scholar
  36. Keskitalo, J., Bergquist, G., Gardeström, P., and Jansson S. 2005. A cellular timetable of autumn senescence. Plant Physiol. 139:1635–1648.CrossRefPubMedGoogle Scholar
  37. Kessler, A. and Baldwin, I.T. 2001. Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144.CrossRefPubMedGoogle Scholar
  38. Kontunen-Soppela, S., Parviainen, J., Ruhanen, H., Brosche, M., Keinänen, M., Thakur, R.C., Kolehmainen, M., Kangasjärvi, J., Oksanen, E,. Karnosky, D.F., and Vapaavuori E. 2010. Gene expression responses of paper birch (Betula papyrifera) to elevated CO2 and O3 during leaf maturation and senescence. Environ. Poll. 158:959–968.CrossRefGoogle Scholar
  39. Loreto, F., Pinelli, P., Manes, F., and Kollist, H. 2004. Impact of ozone on monoterpene emissions and evidence for an isoprene-like antioxidant action of monoterpenes emitted by Quercus ilex leaves. Tree Physiol. 24:361–367PubMedGoogle Scholar
  40. Loreto, F. and Schnitzler, J.P. 2010. Abiotic stresses and induced BVOCs. Trends Plant Sci. 15:54–166.CrossRefGoogle Scholar
  41. Magel, E., Mayrhofer, S., Muller, A., Zimmer, I., Hampp, R., and Schnitzler, J.P. 2006. Photosynthesis and substrate supply for isoprene biosynthesis in poplar leaves. Atmos. Environ. 40:S138–S151.CrossRefGoogle Scholar
  42. Mäntylä, E., Alessio, G.A., Blande, J.D., Heijari, J., Holopainen, J.K., Laaksonen, T., Piirtola, P., and Klemola T. 2008. From plants to birds: higher avian predation rates in trees responding to insect herbivory. Plos One 3:e2832CrossRefPubMedGoogle Scholar
  43. Noe, S.M., Ciccioli, P., Brancaleoni, E., Loreto, F., and Niinemets, U. 2006. Emissions of monoterpenes linalool and ocimene respond differently to environmental changes due to differences in physico-chemical characteristics. Atmos. Environ. 40:4649–4662.CrossRefGoogle Scholar
  44. Ougham, H.J., Morris, P., and Thomas, H. 2005. The colours of autumn leaves as symptoms of cellular recycling and defenses against environmental stresses. Curr. Top. Devel. Biol. 66:135–160.CrossRefGoogle Scholar
  45. Pareja, M., Mohib, A., Birkett, M.A., Dufour, S., and R.T. Glinwood. 2009. Multivariate statistics coupled to generalized linear models reveal complex use of chemical cues by a parasitoid. Anim. Behav. 77:901–909.CrossRefGoogle Scholar
  46. Peltonen, P.A., Vapaavuori, E., Julkunen-Tiitto, R., and Holopainen, J.K. 2006. Effects of elevated carbon dioxide and ozone on aphid oviposition preference and birch bud exudate phenolics. Glob. Change Biol. 12:1670–1679.CrossRefGoogle Scholar
  47. Penuelas, J. and Llusia, J. 2003. BVOCs: plant defense against climate warming? Trends Plant Sci. 8:105–109.CrossRefPubMedGoogle Scholar
  48. Percy, K.E., Awmack, C.S., Lindroth, R.L., Kubiske, M.E., Kopper, B.J., Isebrands, J.G., Pregitzer, K.S., Hendrey, G.R., Dickson, R.E., Zak, D.R., Oksanen, E., Sober, J., Harrington, R., and Karnosky, D.F. 2002. Altered performance of forest pests under atmospheres enriched by CO2 and O3. Nature 420:403–407.CrossRefPubMedGoogle Scholar
  49. Pinto, D.M., Blande, J.D., Dong, W.X., Nerg, A.M., and Holopainen, J.K. 2007. Ozone degrades common herbivore-induced plant volatiles: does this affect herbivore prey location by predators and parasitoids? J. Chem. Ecol. 33:683–694.CrossRefPubMedGoogle Scholar
  50. Pope, T.W., Campbell, C.A.M., Hardie, J., Pickett, J.A., and Wadhams, L.J. 2007. Interactions between host-plant volatiles and the sex pheromones of the bird cherry-oat aphid, Rhopalosiphum padi and the damson-hop aphid, Phorodon humuli. J. Chem. Ecol. 33:157–165.CrossRefPubMedGoogle Scholar
  51. Rosenstiel, T.N., Potosnak, M.J., Griffin, K.L., Fall, R., and Monson, R.K. 2003. Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem. Nature 421:256–259.CrossRefPubMedGoogle Scholar
  52. Schaub, A., Blande, J.D., Graus, M., Oksanen, E., Holopainen, J.K., and Hansel, A. 2010. Real-time monitoring of herbivore induced volatile emissions in the field. Physiol. Plantarum 138:123–133.CrossRefGoogle Scholar
  53. Turlings, T.C.J., Tumlinson, J.H., and Lewis, W.J. 1990. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250:1251–1253.CrossRefPubMedGoogle Scholar
  54. Vuorinen, T., Nerg, A.M., Ibrahim, M.A., Reddy, G.V.P., and Holopainen, J.K. 2004. Emission of Plutella xylostella-induced compounds from cabbage grown at elevated CO2 and orientation behavior of the natural enemies. Plant Physiol. 135:1984–1992.CrossRefPubMedGoogle Scholar
  55. Vuorinen, T., Nerg, A.M., Syrjälä, L., Peltonen, P., and Holopainen, J.K. 2007. Epirrita autumnata induced VOC emission of Silver birch differ from emission induced by leaf fungal pathogen. Arthropod-Plant Interactions 1:159–165.CrossRefGoogle Scholar
  56. Vuorinen, T., Nerg, A.-M., Vapaavuori, E., and Holopainen, J.K. 2005. VOC emissions from silver birch (Betula pendula) grown under elevated CO2 and O3 concentrations. Atmos. Environ. 39:1185–1197.CrossRefGoogle Scholar
  57. White, T.C.R. 2003. Nutrient retranslocation hypothesis, a subset of the flush feeding/senescence feeding hypothesis. Oikos 103:217.CrossRefGoogle Scholar
  58. White T.C.R. 2009. Catching a red herring: autumn colours and aphids. Oikos 118:1610–1612.CrossRefGoogle Scholar
  59. Wilkinson, D.M., Sherratt, T.N., Phillip, D.M., Wratten, S.D., Dixon, A.F.G., and Young, A.J. 2002. The adaptive significance of autumn leaf colours. Oikos 99:402–407.CrossRefGoogle Scholar
  60. Yamazaki, K. 2008. Autumn leaf colouration: a new hypothesis involving plant ant mutualism via aphids. Naturwissenschaften 95:671–676.CrossRefPubMedGoogle Scholar
  61. Zahavi, A. 1975. Mate selection—a selection for a handicap. J. Theor. Biol. 53:205–214.CrossRefPubMedGoogle Scholar
  62. Zhu, J.W. and Park, K.C. 2005. Methyl salicylate, a soybean aphid-induced plant volatile attractive to the predator Coccinella septempunctata. J. Chem. Ecol. 31:1733–1746.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Jarmo K. Holopainen
    • 1
    Email author
  • Juha Heijari
    • 1
  • Elina Oksanen
    • 2
  • Giorgio A. Alessio
    • 1
    • 3
  1. 1.Department of Environmental ScienceUniversity of Eastern FinlandKuopioFinland
  2. 2.Department of BiologyUniversity of Eastern FinlandJoensuuFinland
  3. 3.CIDE—Centro de Investigacion sobre la DesertificacionAlbal (Valencia)Spain

Personalised recommendations