Journal of Chemical Ecology

, Volume 36, Issue 10, pp 1092–1100 | Cite as

Parasitoids Modify Their Oviposition Behavior According to the Sexual Origin of Conspecific Cuticular Hydrocarbon Traces

  • Eric Darrouzet
  • Sébastien Lebreton
  • Nicolas Gouix
  • Aurore Wipf
  • Anne-Geneviève Bagnères


Hydrocarbons play a crucial role in insect behavior in general and in sexual recognition in particular. Parasitoids often modify their oviposition behavior according to hydrocarbons left by conspecifics on the reproductive patch, such as oviposition markers left by females after oviposition, or cuticular hydrocarbon (CHC) traces left by individuals by walking or rubbing. This study determined whether Eupelmus vuilleti females are able to distinguish CHCs left by male or female conspecifics on seeds. The results show that the cuticular profile of E. vuilleti differs according to its gender, and that females are able to detect the sexual origin of these CHCs. Moreover, they adjust their oviposition behavior according to the nature of these traces. Although females lay fewer eggs on hosts when confronted with female CHCs, they lay more daughters when confronted with male CHCs, thus changing the sex ratio.

Key Words

Offspring sex ratio Artificial seeds Eupelmus vuilleti Hymenoptera Eupelmidae 



We would like to thank two anonymous reviewers for providing useful comments on the manuscript.


  1. Blomquist, G. J. 2010. Structure and analysis of insect hydrocarbons, pp. 19–34, in G. J. Blomquist and A.-G. Bagnères (eds.). Insect Hydrocarbons: Biology, Biochemistry and Chemical Ecology. Cambridge Univ. Press, Cambridge, UK.CrossRefGoogle Scholar
  2. Blomquist, G. J., and Bagnères, A.-G. 2010. Insect Hydrocarbons: Biology, Biochemistry and Chemical Ecology. Cambridge University Press, 492 p.CrossRefGoogle Scholar
  3. Borges, M., Colazza, S., Ramirez-lucas, P., Chauhan, K. R., Moraes, M. C. B., and Aldrich, J. R. 2003. Kairomonal effect of walking traces from Euschistus heros (Heteroptera: Pentatomidae) on two strains of Telenomus podisi (Hymenoptera : Scelionidae). Physiol. Entomol. 28:349–355.CrossRefGoogle Scholar
  4. Chenoweth, S. F., and Blows, M. W. 2005. Contrasting mutual sexual selection on homologous signal traits in Drosophila serrata. Am. Nat. 165:281–289.CrossRefPubMedGoogle Scholar
  5. Cobb, M, and Jallon, J.-M. 1990. Pheromones, mate recognition and courtship stimulation in the drosophila-melanogaster species subgroup. Anim. Behav. 39:1058–1067.CrossRefGoogle Scholar
  6. Colazza, S., Aquila, G., De Pasquale, C., Peri, E., and Millar, J. G. 2007. The egg parasitoid Trissolcus basalis uses n-nonadecane, a cuticular hydrocarbon from its stink bug host Nezara viridula, to discriminate between female and male hosts. J. Chem. Ecol. 33:1405–1420.CrossRefPubMedGoogle Scholar
  7. Conti, E., Salerno, G., Bin, F., and Vinson, S. B. 2004. The role of host semiochemicals in parasitoid specificity: a case study with Trissolcus brochymenae and Trissolcus simoni on pentatomid bugs. Biol. Control. 29:435–444.CrossRefGoogle Scholar
  8. Dani, F. R., Morgan, E. D., and Turillazzi, S. 1996. Dufour gland secretion of Polistes wasp: Chemical composition and possible involvement in nestmate recognition (Hymenoptera: vespidae). J. Insect Physiol. 42:541–548.CrossRefGoogle Scholar
  9. Darrouzet, E., Imbert, E., and Chevrier, C. 2003. Self-superparasitism consequences for offspring sex ratio in the solitary ectoparasitoid Eupelmus vuilleti. Entomol. Exp. Appl. 109:167–171.CrossRefGoogle Scholar
  10. Darrouzet, E., Bignon, L., and Chevrier, C. 2007. Impact of mating status on egg-laying and superparasitism behaviour in a parasitoid wasp. Entomol. Exp. Appl. 123:279–285.CrossRefGoogle Scholar
  11. Darrouzet, E., Boivin, G., and Chevrier, C. 2008. Sex allocation decision under superparasitism by the parasitoid wasp Eupelmus vuilleti. J. Insect Behav. 21, 181–191.CrossRefGoogle Scholar
  12. Ferveur, J.-F. 2005. Cuticular hydrocarbons: Their evolution and roles in Drosophila pheromonal communication. Behav. Gen. 35:279–295.CrossRefGoogle Scholar
  13. Ferveur, J.-F., and Cobb, M. 2010. Behavioral and evolutionary role of hydrocarbons in Diptera, pp. 325–343, in G. J. Blomquist and A.-G. Bagnères (eds.). Insect Hydrocarbons: Biology, Biochemistry and Chemical Ecology. Cambridge Univ. Press, Cambridge, UK.CrossRefGoogle Scholar
  14. Gauthier, N., Monge, J. P., and Huignard, J. 1996. Superparasitism and host discrimination in the solitary ectoparasitoid Dinarmus basalis. Entomol. Exp. Appl. 79:91–99.CrossRefGoogle Scholar
  15. Gauthier, N., Sanon, A., Monge, J. P., and Huignard, J. 1999. Interspecific relations between two sympatric species of hymenoptera, Dinarmus basalis (Rond) and Eupelmus vuilleti (Crw), ectoparasitoids of the bruchid Callosobruchus maculatus (F). J. Insect Behav. 12:399–413.CrossRefGoogle Scholar
  16. Gibbs, A. G. 1998. Water-proofing properties of cuticular lipids. Am. Zool. 38:471–482.Google Scholar
  17. Ginzel, M. D., Blomquist, G. J., Millar, J. G., Hanks L. M. 2003. Role of contact pheromones in mate recognition in Xylotrechus colonus. J. Chem. Ecol. 29(3), 533–545.CrossRefPubMedGoogle Scholar
  18. Godfray, H. C. J. 1990. The causes and consequences of constrained sex allocation in haplodiploid animals. J. Evol. Biol. 3:3–17.CrossRefGoogle Scholar
  19. Godfray, H. C. J. 1994. Parasitoids, Behavioral and Evolutionary Ecology. Princeton University Press, Princeton, New Jersey, 473 p.Google Scholar
  20. Gozansky, T. K., Soroker, V., and Hefetz, A. 1997. The biosynthesis of Dufour’s gland constituents in queens of the honeybee (Apis mellifera). Inver. Neurosci. 3:239–243.CrossRefGoogle Scholar
  21. Hamilton, W. D. 1967. Extraordinary sex ratios. Science 156:477–488.CrossRefPubMedGoogle Scholar
  22. Henter, H. J. 2004. Constrained sex allocation in a parasitoid due to variation in male quality. J. Evol. Biol. 17:886–896.CrossRefPubMedGoogle Scholar
  23. Howard, R. W., and Baker, J. E. 2003. Morphology and chemistry of Dufour glands in four ectoparasitoids: Cephalonomia tarsalis, C-waterstoni (Hymenoptera : Bethylidae), Anisopteromalus calandrae, and Pteromalus cerealellae (Hymenoptera : Pteromalidae). Comp. Biochem. Physiol. B. 135:153–167.CrossRefPubMedGoogle Scholar
  24. Howard, R. W., and Blomquist, G. J. 2005. Ecological, behavioral, andbiochemical aspects of insect hydrocarbons. Annu. Rev. Entomol. 50:371–393.CrossRefPubMedGoogle Scholar
  25. Jaloux, B., Errard, C., Mondy, N., Vannier, F., and Monge, J. P. 2005. Sources of chemical signals which enhance multiparasitism preference by a cleptoparasitoid. J. Chem. Ecol. 31, 1325–1337.CrossRefPubMedGoogle Scholar
  26. Lebreton, S., Labarussia, M., Chevrier, C., and Darrouzet, E. 2009. Discrimination of the age of conspecific eggs by an ovipositing ectoparasitic wasp. Entomol. Exp. Appl., 130, 28–34.CrossRefGoogle Scholar
  27. Lebreton, S., Chevrier, C., and Darrouzet, E. 2010. Sex allocation strategies in response to conspecifics’ offspring sex ratio in solitary parasitoids. Behav. Ecol., 21, 107–112.CrossRefGoogle Scholar
  28. Lockey, K. H. 1988. Lipids of the insect cuticle: origin, composition and function. Comp. Biochem. Physiol. 89B, 595–645.Google Scholar
  29. Marris, G. C., Hubbard, S. F., and Scrimgeour, C. 1996. The perception of genetic similarity by the solitary parthenogenetic parasitoid Venturia canescens, and its effects on the occurrence of superparasitism. Entomol. Exp. Appl. 78:167–174.CrossRefGoogle Scholar
  30. Mayhew, P. J., and Hardy, I. C. W. 1998. Nonsiblicidal behavior and the evolution of clutch size in Bethylid wasps. Am. Nat. 151:409–424.CrossRefPubMedGoogle Scholar
  31. Müller, C., and Riederer, M. 2005. Plant surface properties in chemical ecology. J. Chem. Ecol., 31, 2621–2651.CrossRefPubMedGoogle Scholar
  32. Nakashima, Y., Birkett, M. A., Pye, B. J., Pickett, J. A., and Powell, W. 2004. The role of semiochemicals in the avoidance of the seven-spot ladybird, Coccinella septempunctata, by the aphid parasitoid, Aphidius ervi. J. Chem. Ecol. 30:1103–1116.CrossRefPubMedGoogle Scholar
  33. Nelson, D. R. 1993. Methyl-branched lipids in insects, pp. 271–315, in D. W. Stanley-Samuelson and D. R. Nelson (eds.). Insect Lipids: Chemistry, Biochemistry and Biology. University of Nebraska Press, Lincoln, NE.Google Scholar
  34. Nufio, C. R., and Papaj, D. R. 2001. Host marking behavior in phytophagous insects and parasitoids. Entomol. Exp. Appl.. 99:273–293.CrossRefGoogle Scholar
  35. Ode, P. J., Antolin, M. F., and Strand, M. R. 1997. Constrained oviposition and female-biased sex allocation in a parasitic wasp. Oecologia. 109:547–555.CrossRefGoogle Scholar
  36. Oldham, N. J., Billen, J., and Morgan, E. D. 1994. On the similarity of the Dufour gland secretion and the cuticular hydrocarbons of some bumblebees. Physiol. Entomol. 19:115–123.CrossRefGoogle Scholar
  37. Roitberg, B. D., and Mangel, M. 1988. On the evolutionary ecology of marking pheromones. Evol. Ecol., 2:289–315.CrossRefGoogle Scholar
  38. Santolamazza-carbone, S., Rodriguez-illamola, A., and Cordero Rivera, A. 2004. Host finding and host discrimination ability in Anaphes nitens Girault, an egg parasitoid of the Eucalyptus snout-beetle Gonipterus scutellatus Gyllenhal. Biol. Control 29:24–33.CrossRefGoogle Scholar
  39. Thomas, M. L., and Simmons, L. W. 2008. Sexual dimorphism in cuticular hydrocarbons of the Australian field cricket Teleogryllus oceanicus (Orthoptera : Gryllidae). J. Insect Physiol. 54:1081–1089.CrossRefPubMedGoogle Scholar
  40. Ueno, T. 1997. Effects of superparasitism, larval competition and host feeding on offspring fitness in the parasitoid Pimpla nipponica (Hymenoptera: Ichneumonidae). Ann. Entomol. Soc. Am. 90:682–688.Google Scholar
  41. Van Alphen, J. J. M., and Nell, H. W. 1982. Superparasitism and host discrimination by Asobara tabida Nees (Braconidae: Alysiinae), a larval parasitoid of drosophilidae. Neth. J. Zool. 32:232–260.CrossRefGoogle Scholar
  42. Van Alphen, J. J. M., and Visser, M. E. 1990. Superparasitism as an adaptive strategy for insect parasitoids. Annu. Rev. Entomol. 35:59–79.CrossRefPubMedGoogle Scholar
  43. Vinson, S. B., and Hegazi, E. M. 1998. A possible mechanism for the physiological suppression of conspecific eggs and larvae following superparasitism by solitary endoparasitoids. J. Insect Physiol. 44:703–712.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Eric Darrouzet
    • 1
  • Sébastien Lebreton
    • 1
  • Nicolas Gouix
    • 1
  • Aurore Wipf
    • 1
  • Anne-Geneviève Bagnères
    • 1
  1. 1.I.R.B.I., UMR CNRS 6035 Université de Tours, Faculté des Sciences, parc de GrandmontToursFrance

Personalised recommendations