Journal of Chemical Ecology

, Volume 36, Issue 9, pp 1017–1028 | Cite as

Phenolic Composition and Antioxidant Capacity of Bilberry (Vaccinium myrtillus) Leaves in Northern Europe Following Foliar Development and Along Environmental Gradients

  • Françoise MartzEmail author
  • Laura Jaakola
  • Riitta Julkunen-Tiitto
  • Sari Stark


Bilberry is a characteristic field layer species in the boreal forests and is an important forage plant for herbivores of the North European ecosystem. Bilberry leaves contain high levels of phenolic compounds, especially hydroxycinnamic acids, flavonols, catechins, and proanthocyanidins. We investigated the phenolic composition of bilberry leaves in two studies, one following foliar development in forest and open areas, and the other along a wide geographical gradient from south to north boreal forests in Finland. An analysis of bilberry leaves collected in open and forest areas showed that major phenolic changes appeared in the first stages of leaf development, but, most importantly, synthesis and accumulation of flavonoids was delayed in the forest compared to the high light sites. Sampling along a geographical gradient in the boreal zone indicated that leaves from higher latitudes and higher altitudes had greater soluble phenolic and flavonol levels, higher antioxidant capacity, and lower contents of chlorogenic acid derivatives. The ecological significance of the results is discussed.

Key Words

Vaccinium myrtillus Bilberry Flavonol Soluble phenolics Flavonoid synthesis DPPH Antioxidant capacity Boreal zone Development Latitude Altitude 



The authors thank K. Mikkola for providing background information for site selection, R. Nielsen and M. Weissman for technical help, and J. Hyvönen for statistical advices. We are indebted to everyone involved in the sampling that was done in connection with the BioSoil project (Finnish Forest Research Institute). This work was supported by the European Commission, Regional Development Fund (project “Mette” number 70025/05), the Lapland Regional Fund of the Finnish Cultural Foundation (to F. M.), the Kone Foundation, Finland (to F. M.), and the Academy of Finland (grant no 09141 to L. J.).


  1. Burdulis, D., Ivanauskas, L., Dirsė, V., Kazlauskas, S., and Ražukas, A. 2007. Study of diversity of anthocyanin composition in bilberry (Vaccinium myrtillus L.) fruits. Medicina 43:971–977.PubMedGoogle Scholar
  2. Burnham, K. P., and Anderson, D. R. 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. 2nd edn, p. 488. Springer-Verlag, New York.Google Scholar
  3. Close, D. C., and Mcarthur, C. 2002. Rethinking the role of many plant phenolics—protection from photodamage not herbivores? Oikos 99:166–172.CrossRefGoogle Scholar
  4. Coley, P. D., Bryant, J. P., and Chapin, R. S. 1985. Resource availability and plant anti-herbivore defence. Science 230:895–899.CrossRefPubMedGoogle Scholar
  5. Dixon, R. A., and Paiva, N. L. 1995. Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097.CrossRefPubMedGoogle Scholar
  6. Dombrowicz, E., Zadernowski, R., and Swiatek, L. 1991. Phenolic acids in leaves of Arctostaphylos uva ursi L., Vaccinium vitis idaea L. and Vaccinium myrtillus L. Pharmazie 46:680–681.PubMedGoogle Scholar
  7. Duncan, A. J., and Poppi, D. P. 2008. Nutritional ecology of grazing and browsing ruminants, pp. 89–116, in I. J. Gordon and H. H. T. Prins (eds.). The Ecology of Browsing and Grazing. Springer-Verlag, Berlin Heidelberg.CrossRefGoogle Scholar
  8. Ehlenfeldt, M. K., and Prior, R. L. 2001. Oxygen radical absorbance capacity (ORAC) and phenolic and anthocyanin concentrations in fruit and leaf tissues of highbush blueberry. J. Agric. Food Chem. 49:2222–2227.CrossRefPubMedGoogle Scholar
  9. Fraisse, D., Carnat, A., and Lamaison, J.-L. 1996. Composition polyphénolique de la feuille de myrtille (Polyphenolic composition of the bilberry leaf). Ann. Pharm. Fr. 54:280–283.PubMedGoogle Scholar
  10. Fritz, C., Palacios-Rojas, N., Feil, R., and Stitt, M. 2006. Regulation of secondary metabolism by the carbon–nitrogen status in tobacco: nitrate inhibits large sectors of phenylpropanoid metabolism. Plant J. 46:533–548.CrossRefPubMedGoogle Scholar
  11. Grotewold, E. 2006. The genetics and biochemistry of floral pigments. Annu. Rev. Plant Biol. 57:761–780.CrossRefPubMedGoogle Scholar
  12. Harris, C. S., Burt, A. J., Saleem, A., Le, P. M., Martineau, L. C., Haddad, P. S., Bennett, S. A. L., and Arnason, J. T. 2007. A single HPLC-PAD-APCI/MS method for the quantitative comparison of phenolic compounds found in leaf, stem, root and fruit extracts of Vaccinium angustifolium. Phytochem. Anal. 18:161–169.CrossRefPubMedGoogle Scholar
  13. Hartmann, U., Sagasser, M., Mehrtens, F., Stracke, R., and Weisshaar, B. 2005. Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes. Plant Mol. Biol. 57:155–171.CrossRefPubMedGoogle Scholar
  14. Huang, D., Ou, B., and Prior, R. L. 2005. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 53:1841–1856.CrossRefPubMedGoogle Scholar
  15. Ice, C. H., and Wender, S. H. 1953. Quercetin and its glycosides in leaves of Vaccinium myrtillus. J. Am. Chem. Soc. 75:50–52.CrossRefGoogle Scholar
  16. Jaakola, L., Pirttilä, A. M., Halonen, M., and Hohtola, A. 2001. Isolation of high quality RNA from bilberry (Vaccinium myrtillus L.) fruit. Mol. Biotechnol. 19:201–203.CrossRefPubMedGoogle Scholar
  17. Jaakola, L., Määttä, K., Pirttilä, A. M., Törrönen, R., Kärenlampi, S., and Hohtola, A. 2002. Expression of genes involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development. Plant Physiol. 130:729–739.CrossRefPubMedGoogle Scholar
  18. Jaakola, L., Määttä-Riihinen, K., Kärenlampi, S., and Hohtola, A. 2004. Activation of flavonoid biosynthesis by solar radiation in bilberry (Vaccinium myrtillus L.) leaves. Planta 218:721–728.CrossRefPubMedGoogle Scholar
  19. Jäderlund, A., Zackrisson, O., and Nilsson, M.C. 1996. Effects of bilberry (Vaccinium myrtillus L.) litter on seed germination and early seedling growth of four boreal tree species. J. Chem. Ecol. 22:973–986.CrossRefGoogle Scholar
  20. Jones, C. G., and Hartley, S. E. 1999. A protein competition model of phenolic allocation. Oikos 86:27–44.CrossRefGoogle Scholar
  21. Keski-Saari, S., and Julkunen-Tiitto, R. 2003. Resource allocation in different parts of juvenile mountain birch plants: effect of nitrogen supply on seedling phenolics and growth. Physiol. Plant. 118:114–117.CrossRefPubMedGoogle Scholar
  22. Koes, R., Verweij, W., and Quattrocchio, F. 2005. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci. 10:236–242.CrossRefPubMedGoogle Scholar
  23. Lätti, A. K., Riihinen, K. R., and Kainulainen, P. S. 2008. Analysis of anthocyanin variation in wild populations of bilberry (Vaccinium myrtillus L.) in Finland. J. Agric. Food Chem. 56:190–196.CrossRefGoogle Scholar
  24. Lee, J., Durst, R. W., and Wrolstad, R. E. 2005. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 88:1269–1278.PubMedGoogle Scholar
  25. Lillo, C., Lea, U. S., and Ruoff, P. 2008. Nutrient depletion as a key factor for manipulating gene expression and product formation in different branches of the flavonoid pathway. Plant Cell Environ. 31:587–601.CrossRefPubMedGoogle Scholar
  26. Määttä-Riihinen, K. R., Kähkönen, M. P., Törrönen, A. R., and Heinonen, I. M. 2005. Catechins and procyanidins in berries of Vaccinium species and their antioxidant activity. J. Agric. Food Chem. 53:8485–8491.CrossRefPubMedGoogle Scholar
  27. Mäkitalo, I., Siivari, J., and Hannukkala, A. 2006. Luonnosta teolliseen tuotantoon : Kuvaus luonnontuotealan kehittämishankkeesta Lapissa 2000–2006. Maa- ja elintarviketalous, Jokioinen, 109 p.Google Scholar
  28. Mallik, A. U., and Pelissier, F. 2000. Effects of Vaccinium myrtillus in spruce regeneration: testing the notion of coevoluationary significance of allelopathy. J. Chem. Ecol. 26: 2197–2209.CrossRefGoogle Scholar
  29. Martz, F., Peltola, R., Fontanay, S., Duval, R. E., Julkunen-Tiitto, R., and Stark, S. 2009. Effect of latitude and altitude on the terpenoid and soluble phenolic composition of juniper (Juniperus communis) needles and evaluation of their antibacterial activity in the boreal zone. J. Agric. Food Chem. 57:9575–9584.CrossRefPubMedGoogle Scholar
  30. Matt, P., Krapp, A., Haake, V., Mock, H. P., and Stitt, M. 2002. Decreased Rubisco activity leads to dramatic changes of nitrate metabolism, amino acid metabolism and the levels of phenylpropanoids and nicotine in tobacco antisense RBCS transformants. Plant J. 30:663–677.CrossRefPubMedGoogle Scholar
  31. Matus, J. T., Loyola, R., Vega, A., Peña-Neira, A., Bordeu, E., Arce-Johnson, P., and Alcalde, J. A. 2009. Post-veraison sunlight exposure induces MYB-mediated transcriptional regulation of anthocyanin and flavonol synthesis in berry skins of Vitis vinifera. J. Exp. Bot. 60:853–867.CrossRefPubMedGoogle Scholar
  32. Palviainen, M., Finér, L., Mannerkoski, H., Piirainen, S., and Starr, M. 2005. Changes in the above- and below-ground biomass and nutrient pools of ground vegetation after clear-cutting of a mixed boreal forest. Plant Soil 275:157–167.CrossRefGoogle Scholar
  33. Rieger, G., Muller, M., Guttenberger, H., and Bucar, F. 2008. Influence of altitudinal variation on the content of phenolic compounds in wild populations of Calluna vulgaris, Sambucus nigra, and Vaccinium myrtillus. J. Agric. Food Chem. 56:9080–9086.CrossRefPubMedGoogle Scholar
  34. Riihinen, K., Jaakola, L., Kärenlampi, S., and Hohtola, A. 2008. Organ-specific distribution of phenolic compounds in bilberry (Vaccinium myrtillus) and ‘northblue’ blueberry (Vaccinium corymbosum x V. angustifolium). Food Chem. 110:156–160.CrossRefGoogle Scholar
  35. Salemaa, M., Derome, J., and Nöjd, P. 2008. Response of boreal forest vegetation to the fertility status of the organic layer along a climatic gradient. Boreal Environ. Res. 13: 48–66.Google Scholar
  36. Stark, S., Julkunen-Tiitto, R., Holappa, E., Mikkola, K., and Nikula, A. 2008. Concentrations of foliar quercetin in natural populations of white birch (Betula pubescens) increase with latitude. J. Chem. Ecol. 34:1382–1391.CrossRefPubMedGoogle Scholar
  37. Thiel, A. L., and Perakis, S. S. 2009. Nitrogen dynamics across silvicultural canopy gaps in young forests of western Oregon. For. Ecol. Manag. 258:273–287.CrossRefGoogle Scholar
  38. Tuomi, J., Niemelä, P., and Siren, S. 1990. The Panglossian paradigm and delayed inducible accumulation of foliar phenolics in mountain birch. Oikos 59: 399–410.CrossRefGoogle Scholar
  39. Usadel, B., Bläsing, O. E., Gibon, Y., Poree, F., Höhne, M., Günter, M., Trethewey, R., Kamlage, B., Poorter, H., and Stitt, M. 2008. Multilevel genomic analysis of the response of transcripts, enzyme activities and metabolites in Arabidopsis rosettes to a progressive decrease of temperature in the non-freezing range. Plant Cell Environ. 31:518–547.CrossRefPubMedGoogle Scholar
  40. Witzell, J., and Shevtsova, A. 2004. Nitrogen-induced changes in phenolics of Vaccinium myrtillus—Implications for interaction with a parasitic fungus. J. Chem. Ecol. 30:1937–1956.CrossRefPubMedGoogle Scholar
  41. Witzell, J., Gref, R., and Näsholm, T. 2003. Plant-part specific and temporal variation in phenolic compounds of boreal bilberry (Vaccinium myrtillus) plants. Biochem. Syst. Ecol. 31:115–127.CrossRefGoogle Scholar
  42. Zhang, Z., Kou, X., Fugal, K., and Mclaughlin J. 2004. Comparison of HPLC methods for determination of anthocyanins and anthocyanidins in bilberry extracts. J. Agric. Food Chem. 52: 688–691.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Françoise Martz
    • 1
    Email author
  • Laura Jaakola
    • 2
  • Riitta Julkunen-Tiitto
    • 3
  • Sari Stark
    • 1
  1. 1.Finnish Forest Research InstituteRovaniemiFinland
  2. 2.Department of BiologyUniversity of OuluOuluFinland
  3. 3.Natural Product Research Laboratories, Faculty of BiosciencesUniversity of JoensuuJoensuuFinland

Personalised recommendations