Journal of Chemical Ecology

, Volume 36, Issue 10, pp 1058–1067 | Cite as

Partitioning of New Carbon as 11C in Nicotiana tabacum Reveals Insight into Methyl Jasmonate Induced Changes in Metabolism

  • Nils Hanik
  • Sara Gómez
  • Marcel Best
  • Michael Schueller
  • Colin M. Orians
  • Richard A. Ferrieri
Article

Abstract

We examined the timeline by which methyl jasmonate (MeJA) reprograms new carbon partitioning into key metabolite pools. The radioactive isotope 11C (t1/2 20.4 min), administered to intact leaves of Nicotiana tabacum L. (cv Samsun) as 11CO2 gas enabled us to measure changes in new carbon partitioning into soluble sugar and amino acid pools of [11C]photosynthate. A 500 μM MeJA treatment resulted in a decrease in the [11C]soluble sugar pool and an increase in the [11C]amino acid pool after 4 h. This pattern was more pronounced 15 h after treatment. We also examined the timeline for 11C-partitioning into aromatic amino acid metabolites of the shikimate pathway. [11C]Tyrosine, [11C]phenylalanine and [11C]tryptophan were elevated 1.5-fold, 12-fold and 12-fold, respectively, relative to controls, 4 h after MeJA treatment, while endogeneous pools were unchanged. This suggests that only new carbon is utilized during early stages of defense induction. By 15 h, [11C]tyrosine and [11C]phenylalanine returned to baseline while [11C]tryptophan was elevated 30-fold, suggesting that MeJA exerts selective control over the shikimate pathway. Finally, we measured trans-cinnamic acid levels as a gauge of downstream phenolic metabolism. Levels were unchanged 4 h after MeJA treatment relative to controls, but were increased 2-fold by 15 h, indicating a lag in response of secondary metabolism.

Key Words

Methyl jasmonate Plant defenses Metabolic partitioning Chemical signaling Short-lived radiotracers 11Nicotiana tabacum Shikimate pathway 

References

  1. Arnold, T. M., and Schultz, J. C. 2002. Induced sink strength as a prerequisite for induced tannin biosynthesis in developing leaves of Populus. Oecologia 130:585–593.CrossRefGoogle Scholar
  2. Babst, B. A., Ferrieri, R. A., Gray, D. W., Lerdau, M., Schlyer, D. J., Schueller, M., Thorpe, M. R., and Orians, C. M. 2005. Jasmonic acid induces rapid changes in carbon transport and partitioning in Populus. New Phytol. 167:63–72.CrossRefPubMedGoogle Scholar
  3. Babst, B. A., Sjödin, A., Jansson, S., and Orians, C. M. 2009. Local and systemic transcriptome responses to herbivory and jasmonic acid in populus. Tree Genetics & Genomes 5:459–474.CrossRefGoogle Scholar
  4. Baena-González, E. 2010. Energy signaling in the regulation of gene expression during stress. Molecular Plant 3:300–313.CrossRefPubMedGoogle Scholar
  5. Beardmore, T., Wetzel, S., and Kalous, M. 2000. Interactions of airborne methyl jasmonate with vegetative storage protein gene and protein accumulation and biomass partitioning in Populus plants. Can. J. For. Res. 30:1106–1113.CrossRefGoogle Scholar
  6. Bickel, H., and Schultz, G. 1979. Shikimate pathway regulation in suspensions of intact spinach chloroplasts. Phytochemistry. 18:498–499.CrossRefGoogle Scholar
  7. Bower, N. I., Casu, R. E., Maclean, D. J., Reverter, A., Chapman, S. C., and Manners, J. M. 2005. Transcriptional response of sugarcane roots to methyl jasmonate. Plant Sci. 168:761–772.CrossRefGoogle Scholar
  8. Budi-Muljono, R. A., Looman, A. M. G., Verpoorte, R., and Scheffer, J. J. C. 1998. Assay of salicylic acid and related compounds in plant cell cultures by capillary GC. Phytochem. Analysis 9:35–38.CrossRefGoogle Scholar
  9. Caño-Delgado, A., Penfield, S., Smith, C., Catley, M., and Bevan, M. 2003. Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana. Plant J. 34:351–362.CrossRefPubMedGoogle Scholar
  10. Cheong, Y. H., Chang, H.-S., Gupta, R., Wang, X., Zhu, T., and Luan, S. 2002. Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress and hormonal responses in Arabidopsis. Plant Physiol. 129:661–667.CrossRefPubMedGoogle Scholar
  11. Chow, J., Orenberg, J. B., and Nugent, K. D. 1987. Comparison of automatic pre-column and post-column analysis of amino acids oligomers. J. Chromatogr. 386:243–249.CrossRefPubMedGoogle Scholar
  12. Crawly, M. J. 1983. Herbivory: the dynamics of plant-animal interactions. Blackwell Scientific Publications, Oxford, pp 437.Google Scholar
  13. Creelman, R. A. and Mullet, J. E. 1997. Biosynthesis and action of jasmonates in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:355–381.CrossRefPubMedGoogle Scholar
  14. Devoto, A., and Turner, J. G. 2005. Jasmonate-regulated Arabidopsis stress signaling network. Physiol. Plant. 123:161–172.CrossRefGoogle Scholar
  15. Doerner, P. 2008. Signal and mechanisms in the control of plant growth. Plant Cell Monogr. Series: “Plant Growth Signaling” in L. Bögre, G. Beemster (eds.). Springer-Verlag, Heidelberg, vol.10, pp 1–23.Google Scholar
  16. Dyer, W. E., Henstrand, J. M., Handa, A. K., and Herrmann, K. M. 1989. Wounding induces the first enzyme of the shikimate pathway in Solanaceae. Proc. Natl. Acad. Sci. USA 86:7370–7373.CrossRefPubMedGoogle Scholar
  17. Farmer, E. E., Alméras, E., and Krishnamurthy, V. 2003. Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr. Opin. Plant Biol. 6:372–378.CrossRefPubMedGoogle Scholar
  18. Ferrieri, R. A. and Wolf, A. P. 1983. The chemistry of positron-emitting nucleogenic (hot) atoms with regard to the preparation of labeled compounds of practical utility. Radiochim Acta. 34:69–83.Google Scholar
  19. Ferrieri, R. A., Gray, D. W., Babst, B. A., Schueller, M. J., Schlyer, D. J., Thorpe, M. R., Lerdau, M., and Orians, C. M. 2005. Use of carbon-11 in Populus shows that exogenous jasmonic acid increases biosynthesis of isoprene from recently fixed carbon. Plant Cell & Environ. 28:591–602.CrossRefGoogle Scholar
  20. Feussner, I., and Wasternack, C. 2002. The lipoxygenase pathway. Annu. Rev. Plant Biol. 53:275–297.CrossRefPubMedGoogle Scholar
  21. Gómez, S., Ferrieri, R. A., Schueller, M., and Orians, C. M. 2010. Methyl jasmonate elicits rapid changes in carbon and nitrogen dynamics in tomato. New Phytologist. doi:10.1111/j.1469-8137.2010.03414.x
  22. He, Y., Fukushige, H., Hildebrand, D. F., and Gan, S. 2002. Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiol. 128:876–884.CrossRefPubMedGoogle Scholar
  23. Herrmann, K. M., and Weaver, L. M. 1999. The shikimate pathway. Annu Rev. Plant Physiol. Plant Mol. Biol. 50:473–503.CrossRefPubMedGoogle Scholar
  24. Howe, G. A. 2004. Jasmonates as signals in wound response. J. Plant Growth Regul. 23:223–237.Google Scholar
  25. Hudgins, J. W., Christiansen, E., and Franceshi, V. R. 2004. Induction of anatomically based defense responses in stems of diverse conifers by methyl jasmonate: a phylogenetic perspective. Tree Physiol. 24:251–264.PubMedGoogle Scholar
  26. Ishikura, N., Teramoto, S., Takeshima, Y. and Mitsui, S. 1986. Effects of glyphosate on the shikimate pathway and regulation of phenylalanine ammonialyase in Cryptomeria and Perilla cell suspension cultures. Plant Cell Physiol. 27:677–684.Google Scholar
  27. Jung, C., Lyou, S. H., Yeu, S. Y., Kim, M. A., Rhee, S., Kim, M., Lee, J. S., Choi, Y. D., and Cheong, J. J. 2007. Microarray-based screening of jasmonate-responsive genes in Arabidopsis thaliana. Plant Cell Rep. 26:1053–1063.CrossRefPubMedGoogle Scholar
  28. Kloosterman, H., Hessels, G. I., Vrijbloed, J. W., Euverink, G. J., and Dijkhuizen, L., 2003. (De)regulation of key enzyme steps in the shikimate pathway and phenylalanine-specific pathway of the actinomycete Amycolatopsis methanolica. Microbiol. 149:3321–3330.CrossRefGoogle Scholar
  29. Lee, J. E., Vogt, T., Hause, B., and Lobler, M. 1997. Methyl jasmonate induces an O-methyltransferase in barley. Plant Cell Physiol. 38:851–862.PubMedGoogle Scholar
  30. Maffei, M. E., Mithöfer, A., and Boland, W. 2007. Before gene expression: early events in plant-insect interaction. Trends Plant Sci. 12:310–316.CrossRefPubMedGoogle Scholar
  31. Malone, L. A., Barraclough, E. I., Lin-Wang, K., Stevenson, D. E., and Allan, A. C. 2009. Effects of red-leaved transgenic tobacco expressing a MYB transcription factor on two herbivourous insects, Spondoptera litura and Helicoverpa armigera. Entomol. Exper. Appl. 133:117–127.CrossRefGoogle Scholar
  32. Martin, F., Maudinas, B., and Gadal, P. 1982. Separation of o-phthaldialdehyde derivative of free amino acids from plant tissues by isocratic reversed-phase high-performance liquid chromatography. Ann. Bot. 50:401–406.Google Scholar
  33. McNaughton, S. J. 1983. Compensatory plant growth as a response to herbivory. Oikos. 40:329–336.CrossRefGoogle Scholar
  34. Meuriot, F., Noquet, C., Avice, J. C., Volenec, J. J., Cunningham, S. M., Sors, T. G., Caillot, S., and Ourry, A. 2004. Methyl jasmonate alters N partitioning, N reserves accumulation and induces gene expression of a 32-kDa vegetative storage protein that possesses chitinase activity in Medicago sativa taproots. Physiol. Plant. 120:113–123.CrossRefPubMedGoogle Scholar
  35. Moons, A., Prinsen, E., Bauw, G., and Van Montagu, M. 1997. Antagonistic effects of abscisic acid and jasmonates on salt stress-inducible transcripts in rice roots. Plant Cell 9:2243–2259.CrossRefPubMedGoogle Scholar
  36. Naoumkina, M., Farag, M. A., Sumner, L. W., Tang, Y., Liu, C. J., and Dixon, R. A. 2007. Different mechanisms for phytoalexin induction by pathogen and wound signals in Medicago truncatula. Proc. Natl. Acad. Sci. USA 104:17909–17915.CrossRefPubMedGoogle Scholar
  37. Osbourn, A. E. 1996. Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell 8:1821–1831.CrossRefPubMedGoogle Scholar
  38. Pauwels, L., Morreel, K., Witte, E., Lammertyn, F., Van Montagu, M., Boerjan, W., Inze, D., and Goossens, A. 2008. Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells. Proc. Natl. Acad. Sci. USA 105:1380–1385.CrossRefPubMedGoogle Scholar
  39. Reymond, P., and Farmer, E. E. 1998. Jasmonate and salicylate as global signals for defense gene expression. Curr. Opin. Plant Biol. 1:404–411.CrossRefPubMedGoogle Scholar
  40. Rickauer, M., Brodschelm, W., Bottin, A., Véronési, S., Grimal, H., and Esquerré-Tugayé, M. T. 1997. The jasmonate pathway is involved differentially in the regulation of different defence responses in tobacco cells. Planta 202:155–162.CrossRefGoogle Scholar
  41. Rosenthal, J. P., and Kotanen, P. M. 1994. Terrestrial plant tolerance to herbivory. Trends in Ecology and Evolution. 9:145–148.CrossRefGoogle Scholar
  42. Schwachtje, J., and Baldwin, I. T. 2008. Why does herbivore attack reconfigure primary metabolism. Plant Physiol. 146:845–851.CrossRefPubMedGoogle Scholar
  43. Seltmann, M. A., Stingl, N. E., Lautenschlaeger, J. K., Krischke, M., Mueller, M. J., and Berger, S. 2010. Differential impact of lipoxygenase 2 and jasmonates on natural and stress-induced senescence in Arabidopsis thaliana. Plant Physiol. 152:1940–1950.CrossRefPubMedGoogle Scholar
  44. Sembdner, G., and Parthier, B. 1993. The biochemistry and physiological and molecular actions of jasmonates. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44:569–589.CrossRefGoogle Scholar
  45. Stracke, R., Ishihara, H., Huep, G., Barsch, A., Mehrtens, F., Niehaus, K., and Weisshaar, B. 2007. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J. 50:660–677.CrossRefPubMedGoogle Scholar
  46. Stratmann, J. W. 2003. Long distance run in the wound response—jasmonic acid is pulling ahead. Trends Plant Sci. 8:247–250.CrossRefPubMedGoogle Scholar
  47. Strauss, S. Y., and Agrawal, A. A. 1999. The ecology and evolution of plant tolerance to herbivory. Trends Ecol. Evol. 14:179–185.CrossRefPubMedGoogle Scholar
  48. Thorpe, M. R., Ferrieri, A. P., Herth, M. H., and Ferrieri, R. A. 2007. 11C-Imaging: methyl jasmonate moves in both phloem and xylem, promotes transport of jasmonate, and of photassimilate even after proton transport is decoupled. Planta 226:541–551.CrossRefPubMedGoogle Scholar
  49. Truman, W., Bennett, M. H., Kubigsteltig, I., Turnbull, C., and Grant, M. 2007. Arabidopsis systemic immunity uses conserved defense signaling pathways and is mediated by jasmonates. Proc. Natl. Acad. Sci. USA 104:1075–1080.CrossRefPubMedGoogle Scholar
  50. Van Kleunen, M., Ramponi, G., and Schmid, B. 2004. Effects of herbivory by clipping and jasmonic acid on Solidago Canadensis. Basic Appl. Ecol. 5:173–181.CrossRefGoogle Scholar
  51. Wasternack, C. 2007. Jasmonates: An update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann. Bot. 100:681–697.CrossRefPubMedGoogle Scholar
  52. Wasternack, C., and Parthier, B. 1997. Jasmonate-signaled plant gene expression. Trends Plant Sci. 2:302–307.CrossRefGoogle Scholar
  53. Weber, H. 2002. Fatty acid derived signals in plants. Trends Plant Sci. 7:214–224.CrossRefGoogle Scholar
  54. Wu, J. Q., Hettenhausen, C., Meldau, S., and Baldwin, I. T. 2007. Herbivory rapidly activates MAPK signaling in attacked and unattacked leaf regions but not between leaves of Nicotiana attenuata. Plant Cell 19:1096–1122.CrossRefPubMedGoogle Scholar
  55. Xie, D. X., Feys, B. F., James, S., Nieto-Rostro, M., and Turner, J. G. 1998. COI1: An Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280:1091–1094.CrossRefPubMedGoogle Scholar
  56. Zangerl, A. R. 2003. Evolution of induced plant responses to herbivores. Basic Appl. Ecol. 4:91–103.CrossRefGoogle Scholar
  57. Zangerl, A. R., Arntz, A. M., and Berenbaum, M. R. 1997. Physiological price of an induced chemical defense: photosynthesis, respiration, biosynthesis, and growth. Oecologia 109:433–441.CrossRefGoogle Scholar
  58. Zhang, Z. P., and Baldwin, I. T. 1997. Transport of 2-C-14 jasmonic acid from leaves to roots mimic wound-induced changes in endogenous jasmonic acid pools in Nicotiana sylvestris. Planta 203:436–441.CrossRefGoogle Scholar
  59. Zhao, J., Davis, L. C., and Verpoorte, R. 2005. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv. 23:283–333.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Nils Hanik
    • 1
  • Sara Gómez
    • 2
    • 4
  • Marcel Best
    • 1
  • Michael Schueller
    • 3
  • Colin M. Orians
    • 4
  • Richard A. Ferrieri
    • 3
  1. 1.Fachbereich ChemieJohannes Gutenberg UniversitätMainzGermany
  2. 2.Department of Biological SciencesUniversity of Rhode IslandKingstonUSA
  3. 3.Medical DepartmentBrookhaven National LaboratoryUptonUSA
  4. 4.Department of BiologyTufts UniversityMedfordUSA

Personalised recommendations