Journal of Chemical Ecology

, Volume 36, Issue 8, pp 864–872 | Cite as

New Types of Flavonol Oligoglycosides Accumulate in the Hemolymph of Birch-Feeding Sawfly Larvae

  • Matti Antero Vihakas
  • Lauri Kapari
  • Juha-Pekka Salminen
Article

Abstract

Larvae of nine species of sawflies (Symphyta) were fed with the foliage of three birch species, after which the larval hemolymph composition was studied by HPLC–DAD and HPLC–ESI–MS. The hemolymph of sawfly larvae contained high concentrations of flavonol oligoglycosides (tri-, tetra-, penta-, and hexaglycosides) that could not be found in the larval foliar diet. In addition, there were significant between-sawfly species differences in both flavonoid composition and concentration (from 0.6 to 12.3 mg/ml) of the hemolymph. This suggested that the studied species have different biosynthetic activities for the synthesis of flavonoid oligoglycosides. Variation in the foliar diets did not cause differences in the hemolymph composition. Our hypothesis is that sawflies use foliar flavonoid monoglycosides rather than flavonoid aglycones to produce these new types of oligoglycosides. These findings open up new possibilities for understanding the more holistic role of flavonoids in insect biochemistry and complex interactions between plants and herbivores.

Key Words

Sawfly larvae Hemolymph Flavonol oligoglycosides Mass spectrometry 

References

  1. Boevé, J.-L., and Schaffner, U. 2003. Why does the larval integument of some sawfly species disrupt so easily? The harmful hemolymph hypothesis. Oecologia 134:104–111.CrossRefPubMedGoogle Scholar
  2. Burghardt, F., Knüttel, H., Becker, M., and Fiedler, K. 2000. Flavonoid wing pigments increase attractiveness of female common blue (Polyommatus icarus) butterflies to mate-searching males. Naturwissenschaften 87:304–307.CrossRefPubMedGoogle Scholar
  3. Cipollini, D., Stevenson, R., Enright, S., Eyles, A., and Bonello, P. 2008. Phenolic metabolites in leaves of the invasive shrub, Lonicera maackii, and their potential phytotoxic and anti-herbivore effects. J. Chem. Ecol. 34:144–152.CrossRefPubMedGoogle Scholar
  4. Ferreres, F., Sousa, C., Valentão, P., Pereira, J. A., Seabra, R. M., and Andrade, P. B. 2007. Tronchuda cabbae flavonoids uptake by Pieris brassicae. Phytochemistry 68:361–367.CrossRefPubMedGoogle Scholar
  5. Geuder, M., Wray, V., Fiedler, K., and Proksch, P. 1997. Sequestration and metabolism of host-plant flavonoids by the lycaenid butterfly Polyommatus bellargus. J. Chem. Ecol. 23:1361–1372.CrossRefGoogle Scholar
  6. Graglia, E., Julkunen-Tiitto, R., Shaver, G. R., Schmidt, I., Jonasson, S., and Michelsen, A. 2001. Environmental control and intersite variations of phenolics in Betula nana in tundra ecosystems. New Phytol. 151:227–236.CrossRefGoogle Scholar
  7. Hirayama, C., Ono, H., Tamura, Y., Konno, K., and Nakamura, M. 2008. Regioselective formation of quercetin 5-O-glucoside from orally administered quercetin in the silkworm, Bombyx mori. Phytochemistry 69:1141–1149.CrossRefPubMedGoogle Scholar
  8. Hopkins, T. L. and Ahmad, S. A. 1991. Flavonoid wing pigments in grasshoppers. Experimentia 47:1089–1091.CrossRefGoogle Scholar
  9. Iwashina, T. 2000. The structure and distribution of the flavonoids in plants. J. Plant Res. 113:287–299.CrossRefGoogle Scholar
  10. Keinänen, M. and Julkunen-Tiitto, R. 1998. High-performance liquid chromatographic determination of flavonoids in Betula pendula and Betula pubescens leaves. J. Chrom. A. 793:370–377.CrossRefGoogle Scholar
  11. Kite, G. C., Stoneham, C. A., and Veitch, N. C. 2007. Flavonol tetraglycosides and other constituents from leaves of Styphnolobium japonicum (Leguminosae) and related taxa. Phytochemistry 68:1407–1416.CrossRefPubMedGoogle Scholar
  12. Lahtinen, M., Salminen, J.-P., Kapari, L., Lempa, K., Ossipov, V., Sinkkonen, J., Valkama, E., Haukioja, E., and Pihlaja, K. 2004. Defensive effect of surface flavonoid aglycones of Betula pubescens leaves against first instar Epirrita autumnata larvae. J. Chem. Ecol. 30:2257–2268.CrossRefPubMedGoogle Scholar
  13. Lahtinen, M., Kapari, L., Ossipov, V., Salminen, J.-P., Haukioja, E., and Pihlaja, K. 2005. Biochemical transformation of birch leaf phenolics in larvae of six species of sawflies. Chemoecology 15:153–159.CrossRefGoogle Scholar
  14. Lahtinen, M., Lempa, K., Salminen, J.-P., and Pihlaja, K. 2006. HPLC analysis of leaf surface flavonoids for the preliminary classification of birch species. Phytochem. Anal. 17:197–203.CrossRefPubMedGoogle Scholar
  15. Markham, K. R. and Mabry, T. J. 1975. Ultraviolet-visible and proton magnetic resonance spectroscopy of flavonoids, pp. 45–77, in J. B. Harborne, T. J. Mabry, and H. Mabry (eds.). The Flavonoids. Chapman and Hall Ltd., London, Great Britain.Google Scholar
  16. Müller, C., Agerbirk, N., Olsen, C. E., Boevé, J.-L., Schaffner, U., and Brakefield, P. M. 2001. Sequestration of host plant glucosinolates in the defensive hemolymph of the sawfly Athalia rosae. J. Chem. Ecol. 27:2505–2516.CrossRefPubMedGoogle Scholar
  17. Ossipov, V., Nurmi, K., Loponen, J. Prokopiev, N., Haukioja, E., and Pihlaja, K. 1995. HPLC Isolation and identification of flavonoids from white birch Betula pubescens leaves. Biochem. Syst. Ecol. 23:213–222.CrossRefGoogle Scholar
  18. Ossipov, V., Nurmi, K., Loponen, J., Haukioja, E., and Pihlaja, K. 1996. High-performance liquid chromatographic separation and identification of phenolic compounds from leaves of Betula pubescens and Betula pendula. J. Chrom. A 721:59–68.CrossRefGoogle Scholar
  19. Prieto, J. M., Schaffner, U., Barker, A., Braca, A., Siciliano, T., and Boevé, J.-L. 2007. Sequestration of furostanol saponins by Monophadnus sawfly larvae. J. Chem. Ecol. 33:513–524.CrossRefPubMedGoogle Scholar
  20. Riipi, M., Ossipov, V., Lempa, K., Haukioja, E., Koricheva, J. Ossipova, S., and Pihlaja, K. 2002. Seasonal changes in birch leaf chemistry: are there trade-offs between leaf growth and accumulation of phenolics? Oecologia 130:380–390.CrossRefGoogle Scholar
  21. Ross, J. A. and Kasum, C. M. 2002. Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu. Rev. Nutr. 22:19–34.CrossRefPubMedGoogle Scholar
  22. Salminen, J.-P. and Lempa, K. 2002. Effects of hydrolysable tannins on a herbivorous insect: fate of individual tannins in insect digestive tract. Chemoecology 12:203–211.CrossRefGoogle Scholar
  23. Salminen, J.-P., Ossipov., V., Loponen, J., Haukioja, E., and Pihlaja, K. 1999. Characterisation of hydrolysable tannins from leaves of Betula pubescens by high-performance liquid chromatography–mass spectrometry. J. Chrom. A 864:283–291.CrossRefGoogle Scholar
  24. Salminen, J.-P., Lahtinen, M., Lempa, K., Kapari, L., Haukioja, E., and Pihlaja, K. 2004. Metabolic modifications of birch leaf phenolics by an herbivorous insect: detoxification of flavonoid aglycones via glycosylation. Z. Naturforsch. 59c:437–444.Google Scholar
  25. Simmonds, M. S. J. 2001. Importance of flavonoids in insect-plant interactions: feeding and oviposition. Phytochemistry 56:245–252.CrossRefPubMedGoogle Scholar
  26. Simmonds, M. S. J. 2003. Flavonoid-insect interactions: recent advances in our knowledge. Phytochemistry 64:21–30.CrossRefPubMedGoogle Scholar
  27. Tamura, Y., Nakajima, K., Nagayasu, K., and Takabayashi, C. 2002. Flavonoid 5-glucosides from the cocoon shell of the silkworm, Bombyx mori. Phytochemistry 59:275–278.CrossRefPubMedGoogle Scholar
  28. Taylor, W. G., Fields, P. G., and Sutherland, D. H. 2007. Fractionation of lentil seeds (Lens culinaris Medik.) for insecticidal and flavonol tetraglycoside components. J. Agric. Food Chem. 55:5491–5498.CrossRefPubMedGoogle Scholar
  29. Valkama, E., Salminen, J.-P., Koricheva, J., and Pihlaja, K. 2003. Comparative analysis of leaf trichome structure and composition of epicuticular flavonoids in Finnish birch species. Ann. Bot. 91:643–655.CrossRefPubMedGoogle Scholar
  30. Valkama, E., Salminen, J.-P., Koricheva, J., and Pihlaja, K. 2004. Changes in leaf trichomes and epicuticular flavonoids during leaf development in three birch taxa. Ann. Bot. 94:233–242.CrossRefPubMedGoogle Scholar
  31. Veitch, N. C., Kite, G. C., and Lewis, G. P. 2008. Flavonol pentaglycosides of Cordyla (Leguminosae: Papilionoideae: Swartzieae): Distribution and taxonomic implications. Phytochemistry 69:2329–2335.CrossRefPubMedGoogle Scholar
  32. Wiesen, B., Krug, E., Fiedler, K., Wray, V., and Proksch, P. 1994. Sequestration of host-plant-derived flavonoids by lycaenid butterfly. J. Chem. Ecol. 20:2523–2538.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Matti Antero Vihakas
    • 1
  • Lauri Kapari
    • 2
  • Juha-Pekka Salminen
    • 1
  1. 1.Laboratory of Organic Chemistry and Chemical Biology, Department of ChemistryUniversity of TurkuTurkuFinland
  2. 2.Department of Arctic and Marine BiologyUniversity of TromsøTromsøNorway

Personalised recommendations