Journal of Chemical Ecology

, Volume 36, Issue 7, pp 727–735 | Cite as

A Metabolomic Approach to Identifying Chemical Mediators of Mammal–Plant Interactions

  • David J. Tucker
  • Ian Robert Wallis
  • Jessica M. Bolton
  • Karen J. Marsh
  • Adam A. Rosser
  • Ian M. Brereton
  • Dean Nicolle
  • William J. Foley
Article

Abstract

Different folivorous marsupials select their food from different subgenera of Eucalyptus, but the choices cannot be explained by known antifeedants, such as formylated phloroglucinol compounds or tannins, or by nutritional quality. Eucalypts contain a wide variety of plant secondary metabolites so it is difficult to use traditional methods to identify the chemicals that determine food selection. Therefore, we used a metabolomic approach in which we employed 1H nuclear magnetic resonance spectroscopy to compare chemical structures of representatives from the two subgenera and to identify chemicals that consistently differ between them. We found that dichloromethane extracts of leaves from most species in the subgenus Eucalyptus differ from those in Symphyomyrtus by the presence of free flavanones, having no substitution in Ring B. Although flavanoids are known to deter feeding by certain insects, their effects on marsupials have not been established and must be tested with controlled feeding studies.

Key Words

Metabolomics Eucalyptus Symphyomyrtus Folivorous marsupials Common brushtail possum 1H NMR spectroscopy Flavanones Herbivory 

References

  1. Allwood, J. W., Ellis, D. I., and Goodacre, R. 2008. Metabolomic technologies and their application to the study of plants and plant-host interactions. Physiol. Plant. 132:117–135.PubMedGoogle Scholar
  2. Andrew, R. L., Wallis, I. R., Harwood, C. E., Henson, M., and Foley, W. J. 2007. Heritable variation in the foliar secondary metabolite sideroxylonal in Eucalyptus confers cross-resistance to herbivores. Oecologia 153:891–901.CrossRefPubMedGoogle Scholar
  3. Bick, I. R. C., Brown, R. B., and Hillis, W. E. 1972. Three flavanones from the leaves of Eucalyptus sieberi. Aust. J. Chem. 25:449–451.Google Scholar
  4. Boland, J., Brophy, J. J., and House, A. P. N. 1991. Eucalyptus Leaf Oils: Use, Chemistry, Distillation and Marketing. Inkata Press, Melbourne.Google Scholar
  5. Bryant, J. P., Tahvanainen, J., Sulkinoja, M., Julkunentiitto, R., Reichardt, P., and Green, T. 1989. Biogeographic evidence for the evolution of chemical defense by boreal birch and willow against mammalian browsing. Am. Nat. 134:20–34.CrossRefGoogle Scholar
  6. Conde, E., Cadahia, E., and Garciavallejo, M. C. 1997. Low molecular weight polyphenols in leaves of Eucalyptus camaldulensis, E. globulus and E. rudis. Phytochem. Anal. 8:186–193.CrossRefGoogle Scholar
  7. Diaz, P. P., Arias, T., and Josephnathan, P. 1987. A chromene, an isoprenylated methyl hydroxybenzoate and a C-methyl flavanone from the bark of Piper hostmannianum. Phytochemistry 26:809–811.CrossRefGoogle Scholar
  8. Eschler, B. M., Pass, D. M., Willis, R., and Foley, W. J. 2000. Distribution of foliar formylated phloroglucinol derivatives amongst Eucalyptus species. Biochem. Syst. Ecol. 28:813–824.CrossRefPubMedGoogle Scholar
  9. Foley, W. J., Mcilwee, A., Lawler, I., Aragones, L., Woolnough, A. P., and Berding, N. 1998. Ecological applications of near infrared reflectance spectroscopy a tool for rapid, cost-effective prediction of the composition of plant and animal tissues and aspects of animal performance. Oecologia 116:293–305.CrossRefGoogle Scholar
  10. Hellyer, R. O., and Pinhey, J. T. 1966. The structure of grandiflorone, a new β-triketone. J. Chem. Soc. C. - Organic 17:1496–1498.CrossRefGoogle Scholar
  11. Hoeck, H. N. 1975. Differential feeding behavior of sympatric hyrax Procavia johnstoni and Heterohyrax brucei. Oecologia 22:15–47.CrossRefGoogle Scholar
  12. Horn, D. H. S., and Lamberton, J. A. C. 1963. Nuclear magnetic resonance (NMR) study of a new flavonoid. Chem. Ind. (Lond.):691–2.Google Scholar
  13. Hsieh, Y. L., Fang, J. M., and Cheng, Y. S. 1998. Terpenoids and flavonoids from Pseudotsuga wilsoniana. Phytochemistry 47:845–850.CrossRefGoogle Scholar
  14. Jia, Q., Nichols, T. C., Rhoden, E. E., and Waite, S. 2003. Identification of free-B-ring flavonoids as potent cyclooxygenase 2 (COX-2) inhibitors. U.S. Pat. Appl. Publ., US 2003165588 A1 20030904.Google Scholar
  15. Lisec, J., Schauer, N., Kopka, J., Willmitzer, L., and Fernie, A. R. 2006. Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat. Protoc. 1:387–396.CrossRefPubMedGoogle Scholar
  16. Marsh, K. J., Foley, W. J., Cowling, A., and Wallis, I. R. 2003a. Differential susceptibility to Eucalyptus secondary compounds explains feeding by the common ringtail (Pseudocheirus peregrinus) and common brushtail possum (Trichosurus vulpecula). J. Comp. Physiol. B 173:69–78.PubMedGoogle Scholar
  17. Marsh, K. J., Wallis, I. R., and Foley, W. J. 2003b. The effect of inactivating tannins on the intake of Eucalyptus foliage by a specialist Eucalyptus folivore (Pseudocheirus peregrinus) and a generalist herbivore (Trichosurus vulpecula). Aust. J. Zool. 51:31–42.CrossRefGoogle Scholar
  18. Mayer, R. 1990. Flavonoids from Leptospermum scoparium. Phytochemistry 29:1340–1342.CrossRefGoogle Scholar
  19. Mcilwee, A. M., Lawler, I. R., Cork, S. J., and Foley, W. J. 2001. Coping with chemical complexity in mammal–plant interactions: near-infrared spectroscopy as a predictor of Eucalyptus foliar nutrients and of the feeding rates of folivorous marsupials. Oecologia 128:539–548.CrossRefGoogle Scholar
  20. Moore, B. D., and Foley, W. J. 2005. Tree use by koalas in a chemically complex landscape. Nature 435:488–490.CrossRefPubMedGoogle Scholar
  21. Moore, B. D., Wallis, I. R., Marsh, K. J., and Foley, W. J. 2004a. The role of nutrition in the conservation of the marsupial folivores of eucalypt forests. pp. 549–575, in D. Lunney (ed.). Conservation of Australia’s Forest Fauna. 2nd ed. Royal Zoological Society of New South Wales, Mosman, NSW, Australia.Google Scholar
  22. Moore, B. D., Wallis, I. R., Pala-Paul, J., Brophy, J. J., Willis, R. H., and Foley, W. J. 2004b. Antiherbivore chemistry of Eucalyptus—Cues and deterrents for marsupial folivores. J. Chem. Ecol. 30:1743–1769.CrossRefPubMedGoogle Scholar
  23. Nicholson, J. K., Lindon, J. C., and Holmes, E. 1998. ‘Metabolomics’: understanding the metabolic responses of living systems to pathological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29:1181–1189.CrossRefGoogle Scholar
  24. Pannala, A. S., Chan, T. S., O’brien, P. J., and Rice-Evans, C. A. 2001. Flavonoid B-ring chemistry and antioxidant activity: Fast reaction kinetics. Biochem. Biophys. Res. Comm. 282:1161–1168.CrossRefGoogle Scholar
  25. Pass, D. M., Foley, W. J., and Bowden, B. 1998. Vertebrate herbivory on Eucalyptus—Identification of specific feeding deterrents for common ringtail possums (Pseudocheirus peregrinus) by bioassay-guided fractionation of Eucalyptus ovata foliage. J. Chem. Ecol. 24:1513–1527.CrossRefGoogle Scholar
  26. Pryor, L. D. 1959. Species distribution and association in Eucalyptus, pp. 461–471, in A. Keast, R. L. Crocker, and C. S. Christian (eds.). Biogeography and Ecology in Australia. W. Junk, The Hague.Google Scholar
  27. Reichardt, P., Bryant, J. P., Clausen, T. P., and Wieland, G. D. 1985. Defense of winter-dormant Alaska paper birch against snowshoe hares. Oecologia 65:58–69.CrossRefGoogle Scholar
  28. Sarker, S. D., Bartholomew, B., Nash, R. J., and Simmonds, M. S. J. 2001. Sideroxylin and 8-demethylsideroxylin from Eucalyptus saligna (Myrtaceae). Biochem. Syst. Ecol. 29:759–762.CrossRefPubMedGoogle Scholar
  29. Scrivener, N. J., Johnson, C. N., Wallis, I. R., Takasaki, M., Foley, W. J., and Krockenberger, A. K. 2004. Which trees do wild common brushtail possums (Trichosurus vulpecula) prefer? Problems and solutions in scaling laboratory findings to diet selection in the field. Evol. Ecol. Res. 6:77–87.Google Scholar
  30. Swihart, R. K., Deangelis, D. L., Feng, Z., and Bryant, J. P. 2009. Troublesome toxins: time to re-think plant-herbivore interactions in vertebrate ecology. BMC Ecol. 9:5.CrossRefPubMedGoogle Scholar
  31. Tan, C. L. 1999. Group composition, home range size, and diet of three sympatric bamboo lemur species (genus Hapalemur) in Ranomafana National Park, Madagascar. Int. J. Primat. 20:547–566.CrossRefGoogle Scholar
  32. Treutter, D. 2006. Significance of flavonoids in plant resistance: a review. Env. Chem. Lett. 4:147–157.CrossRefGoogle Scholar
  33. Veitch, N. C., and Grayer, R. E. J. 2008. Flavonoids and their glycosides, including anthocyanins. Nat. Prod. Rep. 25:555–611.CrossRefPubMedGoogle Scholar
  34. Wallis, I. R., and Foley, W. J. 2003. Independent validation of near-infrared reflectance spectroscopy as an estimator of potential food intake of Eucalyptus foliage for folivorous marsupials Aust. J. Zool. 51:95–98.Google Scholar
  35. Wallis, I. R., Watson, M. L., and Foley, W. J. 2002. Secondary metabolites in Eucalyptus melliodora: field distribution and laboratory feeding choices by a generalist herbivore, the common brushtail possum. Aust. J. Zool. 50:507–519.CrossRefGoogle Scholar
  36. Whitham, T. G., Difazio, S. P., Schweitzer, J. A., Shuster, S. M., Allan, G. J., Bailey, J. K., and Woolbright, S. A. 2008. Perspective—Extending genomics to natural communities and ecosystems. Science 320:492–495.CrossRefPubMedGoogle Scholar
  37. Wollenweber, E., and Kohorst, G. 1981. Epicuticular leaf flavonoids from Eucalyptus species and from Kalmia latifolia. Z. Naturforsch., C: Biosci. 36:913–915.Google Scholar
  38. Yamashita, N., Vinyard, C. J., and Tan, C. L. 2009. Food mechanical properties in three sympatric species of Hapalemur in Ranomafana National Park, Madagascar. Am. J. Phys. Anthrop. 139:368–381.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • David J. Tucker
    • 1
  • Ian Robert Wallis
    • 2
  • Jessica M. Bolton
    • 2
  • Karen J. Marsh
    • 2
  • Adam A. Rosser
    • 1
  • Ian M. Brereton
    • 3
  • Dean Nicolle
    • 4
  • William J. Foley
    • 2
  1. 1.School of Science & TechnologyUniversity of New EnglandArmidaleAustralia
  2. 2.Evolution, Ecology and Genetics, Research School of BiologyAustralian National UniversityCanberraAustralia
  3. 3.Centre for Magnetic ResonanceUniversity of QueenslandBrisbaneAustralia
  4. 4.Currency Creek ArboretumOld ReynellaAustralia

Personalised recommendations