Journal of Chemical Ecology

, Volume 36, Issue 6, pp 608–613 | Cite as

Carotenoid Composition of Invertebrates Consumed by Two Insectivorous Bird Species

  • Tapio Eeva
  • Samuli Helle
  • Juha-Pekka Salminen
  • Harri Hakkarainen
Article

Abstract

Dietary carotenoids are important pigments, antioxidants, and immune-stimulants for birds. Despite recent interest in carotenoids in bird ecology, we know surprisingly little about the carotenoid content of invertebrates consumed by birds. We compared carotenoid (lutein, β-carotene, and total) concentrations in invertebrates brought to nestlings by two insectivorous passerines, the great tit, Parus major and the pied flycatcher, Ficedula hypoleuca. We also compared carotenoid levels between environments that were either polluted by heavy metals or were not polluted, because the carotenoid-based plumage color of P. major nestlings is affected by environmental pollution. Lepidopterans were the most carotenoid-rich food items and contained the largest proportion of lutein. There were no differences in carotenoid concentrations in the food items of the two bird species but P. major nestlings obtained more carotenoids from their invertebrate diet than F. hypoleuca nestlings because the P. major diet had a higher proportion of lepidopteran larvae. In polluted areas, P. major nestlings consumed lower levels of dietary carotenoids than in unpolluted areas because of temporal differences in caterpillar abundance between polluted and unpolluted sites. Our study suggests that pollution-related difference in nestling plumage color in P. major is related to varying dietary proportion of lutein-rich food items rather than pollution-related variation in insect carotenoid levels.

Key Words

Carotenoids Caterpillars Insects Invertebrates Lutein Terrestrial food chain 

References

  1. Biard, C., Surai, P. F., and Møller, A. P. 2006. Carotenoid availability in diet and phenotype of blue and great tit nestlings. J. Exp. Biol. 209:1004–1015.CrossRefPubMedGoogle Scholar
  2. Britton, G., Goodwin, T. W., Harriman, G. E., and Lockley, W. J. S. 1977. Carotenoids of ladybird beetle, Coccinella septempunctata. Insect Biochem. 7:337–345.CrossRefGoogle Scholar
  3. Brush, A. H. 1990. Metabolism of carotenoid in birds. FASEB J. 4:2969–2977.PubMedGoogle Scholar
  4. Cramp, S., Perrins, C. M. 1993. The Birds of the Western Palearctic. Oxford University Press, Oxford.Google Scholar
  5. Cumming, G. 2009. Inference by eye: Reading the overlap of independent confidence intervals. Stat. Med. 28:205–220.CrossRefPubMedGoogle Scholar
  6. Eeva, T., Lehikoinen, E., and Pohjalainen, T. 1997. Pollution-related variation in food supply and breeding success in two hole-nesting passerines. Ecology 78:1120–1131.CrossRefGoogle Scholar
  7. Eeva, T., Lehikoinen, E., and Rönkä, M. 1998. Air pollution fades the plumage of the great tit. Funct. Ecol.12:607–612.CrossRefGoogle Scholar
  8. Eeva, T., Ryömä, M., and Riihimäki, J. 2005. Pollution-related changes in diets of two insectivorous passerines. Oecologia 145:629–639.CrossRefPubMedGoogle Scholar
  9. Eeva, T., Sillanpää, S., Salminen, J.-P., Nikkinen, L., Tuominen, A., Toivonen, E., Pihlaja, K., and Lehikoinen, E. 2008. Environmental pollution affects the plumage color of great tit nestlings through carotenoid availability. EcoHealth 5:328–337.CrossRefPubMedGoogle Scholar
  10. Eeva, T., Sillanpää, S., and Salminen, J.-P. 2009. The effects of diet quality and quantity on plumage colour and growth of great tit nestlings: a food manipulation experiment along a pollution gradient. J. Avian Biol. 40:1–9.CrossRefGoogle Scholar
  11. Goodwin, T.W. 1986. Metabolism, nutrition, and function of carotenoids. Annu. Rev. Nutr. 6:273–297.CrossRefPubMedGoogle Scholar
  12. Heliövaara, K., Väisänen, R. 1990. Air pollution levels and abundance of forest insects, pp. 447–467, in: P. Kauppi (ed.). Acidification in Finland. Springer-Verlag, Berlin, HeidelbergGoogle Scholar
  13. Hidalgo, A. and Brandolini, A. 2008. Kinetics of carotenoids degradation during the storage of einkorn (Triticum monococcum L. ssp monococcum) and bread wheat (Triticum aestivum L. ssp aestivum) flours. J. Agric. Food Chem. 56:11300–11305.CrossRefPubMedGoogle Scholar
  14. Hill, G. E. and McGraw, K. J. 2006. Bird Coloration II Function and Evolution. Harvard University Press, Cambridge, MassachusettsGoogle Scholar
  15. Hornung, R. W. and Reed, L. D. 1990. Estimation of average concentration in the presence of nondetectable values. Appl. Occupat. Environ. Hygiene 5:46–51.Google Scholar
  16. Isaksson, C. and Andersson, S. 2007. Carotenoid diet and nestling provisioning in urban and rural great tits Parus major. J. Avian Biol. 38:564–572.Google Scholar
  17. Jussila, I. and Jormalainen, V. 1991. Spreading of heavy metals and some other air pollutants at Pori-Harjavalta district in SW-Finland. SYKEsarja B 4:1–58.Google Scholar
  18. Kiikkilä, O. 2003. Heavy-metal pollution and remediation of forest soil around the Harjavalta Cu-Ni smelter, in SW Finland. Silva Fenn. 37:399–415.Google Scholar
  19. Martens, S. N. and Boyd, R. S. 1994. The ecological significance of nickel hyperaccumulation—a plant-chemical defense. Oecologia 98:379–384.CrossRefGoogle Scholar
  20. McGraw, K. J. 2005. Interspecific variation in dietary carotenoid assimilation in birds: Links to phylogeny and color ornamentation. Compar. Biochem. Physiol. B-Biochem. Mol. Biol. 142:245–250.CrossRefGoogle Scholar
  21. McGraw, K. J. 2006. Mechanics of carotenoid-based coloration, pp. 177–242, in G. E. Hill, K. J. McGraw (eds.). Bird Coloration I Mechanisms and Measurements. Harvard University Press, Cambridge, Massachusetts.Google Scholar
  22. Partali, V., Liaaen-Jensen, S., Slagsvold, T., and Lifjeld, J. T. 1985. Carotenoids in food chain studies-II. The food chain of Parus spp. monitored by carotenoid analysis. Compar. Biochem. Physiol. B—Compar. Biochem. Mol. Biol. 82:767–772.CrossRefGoogle Scholar
  23. Ruohomäki, K., Kaitaniemi, P., Kozlov, M., Tammaru, T., and Haukioja, E. 1996. Density and performance of Epirrita autumnata (Lepidoptera: Geometridae) along three air pollution gradients in northern Europe. J. Appl. Ecol. 33:773–785.CrossRefGoogle Scholar
  24. Sas Institute 2003. The SAS System for Windows. Release 9.1. SAS Inst., Cary, NC.Google Scholar
  25. Sillanpää, S., Salminen, J.-P., Lehikoinen, E., Toivonen, E., and Eeva, T. 2008. Carotenoids in a food chain along a pollution gradient. Sci. Total Environ. 406:247–255.CrossRefPubMedGoogle Scholar
  26. Sillanpää, S., Salminen, J.-P., and Eeva, T. 2009. Breeding success and lutein availability in great tit (Parus major). Acta Oecol. 35:805–810.CrossRefGoogle Scholar
  27. Slagsvold, T. and Lifjeld, J. T. 1985. Variation in plumage colour of the great tit Parus major in relation to habitat, season and food. J. Zool. (London) 206:321–328.Google Scholar
  28. Surai, P. F., Speake, B. K., and Sparks, N. H. C. 2001. Carotenoids in avian nutrition and embryonic development. 1. Absorption, availability and levels in plasma and egg yolk. J. Poult. Sci. 38:1–27.CrossRefGoogle Scholar
  29. Tummeleht, L., Mägi, M., Kilgas, P., Mänd, R., and Hõrak, P. 2006. Antioxidant protection and plasma carotenoids of incubating great tits (Parus major L.) in relation to health state and breeding conditions. Comp. Biochem. Physiol. C-Toxicol. Pharmacol. 144:166–172.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Tapio Eeva
    • 1
  • Samuli Helle
    • 1
  • Juha-Pekka Salminen
    • 2
  • Harri Hakkarainen
    • 1
  1. 1.Section of EcologyUniversity of TurkuTurkuFinland
  2. 2.Laboratory of Organic Chemistry and Chemical BiologyUniversity of TurkuTurkuFinland

Personalised recommendations