Journal of Chemical Ecology

, Volume 36, Issue 6, pp 662–669 | Cite as

High Molecular Size Humic Substances Enhance Phenylpropanoid Metabolism in Maize (Zea mays L.)

  • Michela Schiavon
  • Diego Pizzeghello
  • Adele Muscolo
  • Silvia Vaccaro
  • Ornella Francioso
  • Serenella Nardi


A high molecular weight humic fraction (>3,500 Da) was characterized chemically by DRIFT and 1H NMR spectroscopy, and was applied to Zea mays L. plants to evaluate its effect on phenylpropanoid metabolism. The activity and gene expression of phenylalanine (tyrosine) ammonia-lyase (PAL/TAL), and the concentrations of phenolics and their amino acid precursors phenylalanine and tyrosine were assayed. Maximum induction of PAL/TAL activity and expression was obtained when the concentration of added humic substance was 1 mg C/l hydroponic solution. Phenylalanine and tyrosine significantly decreased (−16% and −22%, respectively), and phenolic compounds increased in treated plants. The effects of the humic substance could be ascribed partly to indoleacetic acid (27 nmol/mg C) in the humic fraction. Our results suggest that this humic fraction induces changes in phenylpropanoid metabolism. This is the first study that shows a relationship between humic substances and the phenylpropanoid pathway.

Key Words

High molecular weight humic substances Zea mays L. DRIFT (Diffuse Reflectance Infrared Fourier Transform spectroscopy) 1H NMR (Proton Nuclear Magnetic Resonance spectroscopy) Phenylalanine (tyrosine) ammonia-lyase Phenolics 



This work was partially supported by a grant from the University of Padova (ex 60%, 2008) awarded to Prof. Serenella Nardi. We are grateful to Dr. Andrea Ertani and Dr. Sara Trevisan for their helpful assistance. The authors would like to thank Professor Ann E. Hagerman for her precious help in the improvement of the manuscript.


  1. Andersen, J. R., Zein, I., Wenzel, G., Krützfeldt, B., Eder, J., Ouzunova, M., and Lübberstedt, T. 2007. High levels of linkage disequilibrium and associations with forage quality at a phenylalanine ammonia-lyase locus in European maize (Zea mays L.) inbreds. Theor. Appl. Genet. 114:307–319.CrossRefPubMedGoogle Scholar
  2. Arnaldos, T. L., Muñoz, R., Ferrer, M. A., and Calderón, A. A. 2001. Changes in phenol content during strawberry (Fragaria ananassa, cv. Chandler) callus culture. Physiol. Plantarum 113:315–322.CrossRefGoogle Scholar
  3. Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.CrossRefPubMedGoogle Scholar
  4. Buer, C. S., and Muday, G. K. 2004. The transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light. The Plant Cell. 16:1191–1205.CrossRefPubMedGoogle Scholar
  5. Canellas, L. P., Olivares, F. L., Okorokova-Façanha, A. L., and Façanha, A. R. 2002. Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H + -ATPase activity in maize roots. Plant Physiol. 130:1951–1957.CrossRefPubMedGoogle Scholar
  6. Canellas, L. P., Teixeira Junior, L. R. L., Dobbss, L. B., Silva, C. A., Medici, L. O., Zandonadi, D. B., and Façanha, A. R. 2008. Humic acids crossinteractions with root and organic acids. Ann. Appl. Biol. 153:157–166.Google Scholar
  7. Canellas, L. P., Piccolo, A., Dobbss, L. B., Spaccini, R., Olivares, F. L., Zandonadi, D. B., and Façanha, A. R. 2010. Chemical composition and bioactivity properties of size-fractions separated from a vermicompost humic acid. Chemosphere 78:457–466.CrossRefPubMedGoogle Scholar
  8. Cánovas, F. M., Cantón, F. R., Gallardo, F., Garcia-Gutierrez, A., and De Vicente, A. 1991. Accumulation of glutamine synthetase during early development of maritime pine (Pinus pinaster) seedlings. Planta 185:372–378.CrossRefGoogle Scholar
  9. Cavani, L., Ter Halle, A., Richard, C., and Ciavatta, C. 2006. Photo-sensitizing properties of protein hydrolysates-based fertilizers. J. Agric. Food Chem. 54:9160–9167.CrossRefPubMedGoogle Scholar
  10. Dixon, R. A., and Paiva, N. L. 1995. Stress-induced phenylpropanoid metabolism. The Plant Cell 7:1085–1097.CrossRefPubMedGoogle Scholar
  11. Eyheraguibel, B., Silvestre, J., and Morard, P. 2008. Effects of humic substances derived from organic waste enhancement on the growth and mineral nutrition of maize. Bioresour. Technol. 99:4206–4212.CrossRefPubMedGoogle Scholar
  12. Fan, T. W. M. 1996. Metabolite profiling by one- and two-dimensional NMR analysis of complex mixtures. Prog. Nucl. Mag. Res. Sp. 28:161–219.Google Scholar
  13. Fao–Issds, 1999. World Reference Base for Soil Resources. Istituto Sperimentale per lo Studio e la Difesa del Suolo, Firenze, Italy.Google Scholar
  14. Hoagland, D. R., and Arnon, D. 1950. The water culture method for growing plants without soil. Agricultural Experimental Station Circular 347. University of California, CA.Google Scholar
  15. Kaufmann iii, G. L., Kneivel, D., and Watschke, T. L. 2007. Effects of a biostimulant on the heat tolerance associated with photosynthetic capacity, membrane thermostability, and polyphenol production of perennial ryegrass. Crop Sci. 47:261–267.Google Scholar
  16. Kim, H. J., Fonseca, J. M., Choi, J. H., and Kubota, C. 2007. Effect of methyl jasmonate on phenolic compounds and carotenoids of romaine lettuce (Lactuca sativa L.). J. Agric. Food Chem. 55:10366–10372.CrossRefPubMedGoogle Scholar
  17. Le Floch, G., Rey, P., Benizri, E., Benhamou, N., and Tirilly, Y. 2003. Impact of auxin-compounds produced by the antagonistic fungus Pythium oligandrum or the minor pathogen Pythium group F on plant growth. Plant Soil 257:459–470.Google Scholar
  18. Lewis, D., Muday, R., and Gloria, K. 2008. The phenylpropanoid pathway is differentially induced by auxin and ethylene, pp. 125, in J. Friesner, X. Chen, J. Kieber, C. Chang, G. Haughn, S. Poethig, J. Schroeder, T. Western, and H. Zheng (eds.). Proceedings of the 19th International Conference on Arabidopsis Research. The North American Arabidopsis Steering Committee, Montreal, Canada.Google Scholar
  19. Maggioni, A., and Renosto, F. 1980. Profilo amminoacidico e valore nutritivo della proteina di Agaricus bisporus (Lange) Fing. e di Agaricus botorquis (Quélet) Saccardo. Agricoltura Italiana 109:237–246.Google Scholar
  20. Meenakshi, S., Manicka Gnanambigai, D., Tamil Mozhi, S., Arumugam, M., and Balasubramanian, T. 2009. Total flavanoid and in vitro antioxidant activity of two seaweeds of Rameshwaram Coast. Glob. J. Pharmacol. 3:59–62.Google Scholar
  21. Mori, T., Sakurai, M., and Sakuta, M. 2001. Effects of conditioned medium on activities of PAL, CHS, DAHP synthase (DS-Co and DS-Mn) and anthocyanin production in suspension cultures of Fragaria ananassa. Plant Sci. 160:355–360.CrossRefPubMedGoogle Scholar
  22. Muscolo, A., Sidari, M., Attinà, E., Francioso, O., Tugnoli, V., and Nardi, S. 2007. Biological activity of humic substances is related to their chemical structure. Soil Sci. Soc. Am. J. 71:75–85.CrossRefGoogle Scholar
  23. Nardi, S., Tosoni, M., Pizzeghello, D., Provenzano, M. R., Cilenti, A., Sturaro, A., Rella, R., and Vianello, A. 2005. Chemical characteristics and biological activity of organic substances extracted from soils by root exudates. Soil Sci. Soc. Am. J. 69:2012–2019.CrossRefGoogle Scholar
  24. Nardi, S., Muscolo, A., Vaccaro, S., Baiano, S., Spaccini, R., and Piccolo, A. 2007. Relationship between molecular characteristics of soil humic fractions and glycolytic pathway and Krebs cycle in maize seedlings. Soil Biol. Biochem. 39:3138–3146.CrossRefGoogle Scholar
  25. Nardi, S., Carletti, P., Pizzeghello, D., and Muscolo, A. 2009. Biological activities of humic substances, pp. 305–339, in N. Senesi, B. Xing, and P. M. Huang (eds.). Volume 2-Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems. PART I. Fundamentals and impact of mineral-organic-biota interactions on the formation, transformation, turnover, and storage of natural nonliving organic matter (NOM). John Wiley & Sons, Hoboken, New Jersey.Google Scholar
  26. Niemeyer, J., Chen, Y., and Bollag, J. M. 1992. Characterization of humic acids, composts, and peat by diffuse reflectance Fourier-transform infrared spectroscopy. Soil Sci. Soc. Am. J. 56:135–140.Google Scholar
  27. Peer, W. A., and Murphy, A. S. 2007. Flavonoids and auxin transport: modulators or regulators? Trends Plant Sci. 12:556–563.CrossRefPubMedGoogle Scholar
  28. Piccolo, A. 2002. The supramolecular structure of humic substances: A novel understanding of humus chemistry and implications in soil science. Adv. Agron. 75:57–134.CrossRefGoogle Scholar
  29. Quaggiotti, S., Ruperti, B., Pizzeghello, D., Francioso, O., Tugnoli, V., and Nardi, S. 2004. Effect of low molecular size humic substances on nitrate uptake and expression of genes involved in nitrate transport in maize (Zea mays L.). J. Exp. Bot. 55:803–13.CrossRefPubMedGoogle Scholar
  30. Rösler, J., Krekel, F., Amrhein, N., and Schmid, J. 1997. Maize phenylalanine ammonia-lyase has tyrosine ammonia-lyase activity. Plant Physiol. 113:175–9.CrossRefPubMedGoogle Scholar
  31. Russell, L., Stokes, A. R., Macdonald, H., Muscolo, A., and Nardi, S. 2006. Stomatal responses to humic substances and auxin are sensitive to inhibitors of phospholipase A2. Plant Soil 283:175–185.CrossRefGoogle Scholar
  32. Schiavon, M., Ertani, A., and Nardi, S. 2008. Effects of an alfalfa protein hydrolysate on the gene expression and activity of enzymes of the tricarboxylic acid (TCA) cycle and nitrogen metabolism in Zea mays L. J. Agric. Food Chem. 6:11800–11808.CrossRefGoogle Scholar
  33. Shinya, T., Gális, I., Narisawa, T., Sasaki, M., Fukuda, H., Matsuoka, H., Saito, M., and Matsuoka, K. 2007. Comprehensive analysis of glucan elicitor-regulated gene expression in tobacco BY-2 cells reveals a novel MYB transcription factor involved in the regulation of phenylpropanoid metabolism. Plant Cell Physiol. 48:1404–1413.CrossRefPubMedGoogle Scholar
  34. Schweizer, P., and Erismann, K. H. 1985. Effect of nitrate and ammonium nutrition of nonnodulated Phaseolus vulgaris L. on phosphoenolpyruvate carboxylase and pyruvate kinase activity. Plant Physiol. 78:455–458.CrossRefPubMedGoogle Scholar
  35. Sokal, R. R., and Rohlf, F. J. 1969. Biometry. 1st ed. W.H. Freeman, San Francisco.Google Scholar
  36. Stevenson, F. J. 1994. Humus Chemistry: Genesis, Composition, Reactions. John Wiley and Sons, New York.Google Scholar
  37. Trevisan, S., Pizzeghello, D., Reperti, B., Francioso, O., Sassi, A., Palme, K., Quaggiotti, S., and Nardi, S. 2009. Humic substances induce lateral root formation and expression of the early auxin-responsive IAA19 gene and DR5 synthetic element in Arabidopsis. Plant Biology in press, 2010.Google Scholar
  38. Visser, S. A. 1983. Applications of Van krevelen’s graphical-statistical method for the study of aquatic humic material. Environ. Sci. Technol. 17:412–417.CrossRefGoogle Scholar
  39. Zancani, M., Petrussa, E., Krajñáková, J., Casolo, V., Spaccini, R., Piccolo, A., Macrì, F., and Vianello, A. 2009. Effect of humic acids on phosphate level and energetic metabolism of tobacco BY-2 suspension cell cultures. Environ. Exp. Bot. 65:287–295.CrossRefGoogle Scholar
  40. Zandonadi, D. B., Canellas, L. P., and Façanha, A. R. 2007. Indolacetic and humic acids induce lateral root development through a concerted plasmalemma and tonoplast H + pumps activation. Planta 225:1583–1595.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Michela Schiavon
    • 1
  • Diego Pizzeghello
    • 1
  • Adele Muscolo
    • 2
  • Silvia Vaccaro
    • 1
  • Ornella Francioso
    • 3
  • Serenella Nardi
    • 1
  1. 1.Department of Agricultural BiotechnologiesUniversity of PadovaLegnaro, PadovaItaly
  2. 2.Department of Agriculture and Forest Systems ManagementMediterranean University of Reggio CalabriaReggio di CalabriaItaly
  3. 3.Department of Agroenvironmental Science and TechnologyUniversity of BolognaBolognaItaly

Personalised recommendations